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Flexible long period moiré superlattices form in two-dimensional van der Waals crystals containing
layers that differ slightly in lattice constant or orientation. In this Letter we show theoretically that isolated
flat moiré bands described by generalized triangular lattice Hubbard models are present in twisted
transition metal dichalcogenide heterobilayers. The hopping and interaction strength parameters of the
Hubbard model can be tuned by varying the twist angle and the three-dimensional dielectric environment.
When the flat moiré bands are partially filled, candidate many-body ground states at some special filling
factors include spin-liquid states, quantum anomalous Hall insulators, and chiral d-wave superconductors.
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Introduction.—Long-period superlattices form when
two-dimensional crystals are overlaid with a small differ-
ence in lattice constant or orientation. When the two-
dimensional crystals are semiconductors or semimetals,
their low-energy electronic degrees of freedom (d.o.f.)
can [1] be accurately described using continuum models
in which commensurability between the moiré pattern
and the atomic lattice plays no role. Because the
continuum model Hamiltonians are periodic in space,
their single-particle eigenstates satisfy Bloch’s theorem
and form bands in momentum space, referred to as moiré
bands. The moiré band Hamiltonian acts in a spinor
space whose dimension is determined by the number of
low-energy bands in the host two-dimensional crystal. In
the moiré band model of twisted bilayer graphene, for
example, there are sixteen low-energy bands correspond-
ing to the bilayer’s four triangular sublattices, and to spin
and valley. Mott insulators and superconductivity have
recently been discovered in the flat bands of twisted
bilayer graphene [2–4]. In this Letter, we construct moiré
band Hamiltonians for holes in twisted heterobilayers
formed from semiconducting transition metal dichalco-
genides (TMDs), which have only two low-energy
valence bands when the chemical potential is within
the topmost valence bands as illustrated in Fig. 1(a), and
therefore map to single-band Hubbard models. We show
theoretically that isolated flat Bloch bands described
by generalized triangular lattice Hubbard models are
present in TMD heterobilayers, and that spin-liquid
states are likely to occur when these bands are close
to half-filling. The moiré bilayers provide a new solid-
state platform to simulate the Hubbard model, one
in which model parameters such as band width, inter-
action strength, and band filling are widely tunable.

This two-dimensional platform can be studied at acces-
sible temperatures using a variety of experimental tech-
niques, for example, transport and scanning tunneling
microscopy.

FIG. 1. (a) Schematic band structure of monolayer WSe2 with a
large (small) spin splitting at valence (conduction) band extrema
located at the �K valleys. (b) AA stacked WX2=MoX2 bilayers
with an additional in-plane displacement d, and a twist angle θ. a1
and a2 are primitive translation vectors ofWX2. (c) Dependence of
the WSe2 valence band maximum ΔðdÞ on displacement d in AA
stacked WSe2=MoSe2 with zero twist angle. ΔðdÞ has triangular
lattice periodicity and one maximum per triangular lattice unit cell.
(d)When a moiré pattern is formed the bandmaximum variation is
magnified from the atomic scale to the moiré pattern scale. The
color scales in (c) and (d) are identical and the orange dashed lines
in (d) are near-neighbor links that connect ΔðrÞ maxima.
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To simulate the two-dimensional Hubbard model, it is
necessary to identify a moiré system in which it is possible
to isolate a single band with a twofold degeneracy. Because
two-dimensional group-VI TMDs such as MoS2 have band
extrema at two inequivalent Brillouin-zone corners [5],
conduction band states occur in groups of four with valley
degeneracy and a small spin splitting due to spin-orbit
interactions. We therefore focus on the isolation of moiré
bands formed from orbitals in the valence band, which have
a very large spin splitting [Fig. 1(a)]. Valley d.o.f. then
faithfully plays the role of spin in the Hubbard model. To
avoid any additional degeneracy due to the presence of two
layers, we choose to study heterobilayers. We consider
common-chalcogen TMDs WX2=MoX2 (X ¼ S, Se),
which have very similar lattice constants and can have
long period moiré patterns. Below we focus on the
influence of the moiré pattern on states near the maximum
of the WSe2 valence bands, which lie inside the MoSe2
gaps and are only weakly coupled to states in MoSe2 due to
band offsets [6]. We note that similar physics can also be
realized in TMD bilayers with different chalcogen atoms
[7,8], for example, WSe2=MoS2, which is studied in detail
in the Supplemental Material [9].
Moiré potential.—To derive the valence band moiré

Hamiltonian from first principles we follow the approach
outlined in Ref. [11], which in the present case requires an
evaluation of the dependence of the WX2 valence band
maximum energy Δ on the relative displacement d between
two layers with identical lattice constants and twist angle
θ ¼ 0. The ab initio calculation was performed using fully
relativistic density-functional theory in the local-density
approximation as implemented in QUANTUM ESPRESSO

[12]. In Fig. 1(c), we plot numerical values of ΔðdÞ for
the AA stackedWSe2=MoSe2 bilayer illustrated in Fig. 1(b).
In the twisted bilayermoiré pattern (θ ≠ 0), the local value of
d changes slowly over the moiré period (aM) and the valence
bandmaximum, which serves as a spin-independent external
potential, follows thevariation ofd, and varies periodically in
space. Because we are interested only in moiré periods
greatly in excess of the host material lattice constant (a0), an
effective mass approximation can be used for the band
dispersion of the host material. We choose m� ∼ 0.35m0

for WSe2, where m0 is the free electron mass. Combining
these considerations we obtain the following moiré band
Hamiltonian:

H ¼ −
ℏ2Q2

2m� þ ΔðrÞ;

ΔðrÞ ¼
X0

b

VðbÞ exp½ib · r�; ð1Þ

where −ℏ2Q2=ð2m�Þ and ΔðrÞ are the moiré band
kinetic and potential energies. The potential ΔðrÞ shown
in Fig. 1(d) can be accurately approximated by a Fourier

expansion that includes only the six moiré reciprocal
lattice vectors in the first shell. Because the potential is real
and each TMD monolayer has threefold-rotational sym-
metry, we require VðbÞ ¼ V�ð−bÞ and VðR̂2π=3bÞ ¼ VðbÞ.
Therefore, all six VðbÞ are fixed by Vðb1Þ ¼ V expðiψÞ,
where b1 ¼ 4π=ð ffiffiffi

3
p

aMÞx̂. Fitting to the ab initio potential
energy, we find that ðV;ψÞ is (6.6 meV, −94°) for WSe2 on
MoSe2 in AA stacking. The fitting procedure has been
described in detail in Refs. [13,14]. Because the coupling
between the two layers can be modified by external vertical
electric field [15] and by pressure [16], the moiré potential is
experimentally tunable. The unprecedented advantage of van
derWaals heterobilayers is that themoiré potential period can
be tuned simply by changing the twist angle: aM ≈ a0=θ. In
the case ofWSe2=MoSe2,aM is about 19nmat 1° twist angle.
We note that collective excitations, for example, excitons,
experience a similar moiré potential energy whose influence
has been studied theoretically in Refs. [13,14,17].
Hubbard model.—The length scales relevant to moiré

Hubbard band formation are the moiré period aM and the
spatial extend aW of the Wannier functions associated with
the highest-energymoiré band, which is localized around the
triangular lattice ofmoiré potentialmaximumpositions.Near
its maximum the moiré potential can be approximated by a
harmonic oscillator potential: −βVðδr=aMÞ2=2, where β ¼
16π2 cosðψ þ 120°Þ for the potential shown in Fig. 1(d).
Within this approximation, aW ≈ ½ℏ2=ðβm�VÞ�1=4 ffiffiffiffiffiffi

aM
p

.
Because aW=aM scales as 1=

ffiffiffiffiffiffi
aM

p
, we can anticipate that

the highest energy moiré band flattens with a decrease in the
twist angle.
In Fig. 2(a) we plot the moiré bands of WSe2 on MoSe2

obtained by diagonalizing the moiré Bloch Hamiltonian
HðkÞ in a plane wave representation:

hkþ g0jHjkþ gi ¼ −δg0;g
ℏ2jkþ gj2

2m� þ Vðg0 − gÞ; ð2Þ

where g and g0 are moiré reciprocal lattice vectors. The
highest valence moiré band at θ ¼ 2.0° is separated from
other bands by an energy gap and has a narrow bandwidth
(∼11 meV). This isolated flatband can be described by a
tight-binding model on a triangular lattice:

H0 ¼
X

τ¼↑;↓

X

R;R0
tðR0 − RÞc†RτcR0τ; ð3Þ

where R represents the triangular lattice formed by the
moiré potential maximum positions, and τ is a valley index.
In Fig. 2(b), we show the density of states (DOS) of the
single-particle moiré bands as a function of hole density,
which is strongly enhanced by the moiré potential, and has
sharp peaks at moiré band saddle points. The flatband
energy dispersion can be accurately fit by including
hopping up to the third nearest neighbor. Figure 2(d)
shows the hopping parameters tn as a function of moiré
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period aM, where tn connects the nth nearest neighbors.
The hopping parameters are real, jt1j is dominant over jt2;3j,
and all three hopping parameters decrease exponentially
with increasing aM.
Figure 2(c) plots the Wannier wave function wðrÞ

constructed from the isolated band’s Bloch states. The
spatial extent aW of this localized wave function increases
with moiré pattern period, in agreement with the estimate
above, but its ratio to aM decreases. Correspondingly the
on-site Coulomb repulsion energy U0 ∼ e2=ðϵaWÞ
decreases slowly as the moiré period increases. It follows
that the ratio of U0 to the bandwidth increases very quickly
with aM, and that electronic states formed when the moiré
band is partially occupied by electrons become strongly
correlated. The effective dielectric constant ϵ in the bilayer
is sensitive to the three-dimensional dielectric environment
out to vertical distances ∼aM from the bilayer, allowing the
strength of correlations at a given orientation angle to be
adjusted over a wide range. To simulate a Hubbard model
with short-range repulsion, we assume that a metallic
screening layer is close to the TMD bilayer, but separated
from it by a dielectric. Such a metallic layer, formed by
graphene, for example, could also act as a gate that controls
the filling factor of the moiré band. In a simple image-
charge approximation, the electron-electron interaction

potential is ŨðrÞ ¼ ðe2=ϵÞ½r−1 − ðr2 þD2Þ−1=2�, where
D=2 is the vertical distance between the metallic layer
and the TMD bilayer. When ŨðrÞ is projected onto the
isolated band Wannier states, and the negligible overlap
between Wannier orbitals centered on different sites is
noted, the interaction Hamiltonian reduces to the general-
ized Hubbard form

H1 ¼
1

2

X

τ;τ0

X

R;R0
UðR0 − RÞc†R;τc†R0;τ0cR0;τ0cR;τ: ð4Þ

In Fig. 3 we plot values of repulsive interactionU0 (on site),
U1 (nearest neighbor), and U2 (second nearest neighbor) as
a function of moiré period aM. These results were calcu-
lated using D ¼ 3 nm, and U1;2 are therefore strongly
suppressed compared to U0. As expected from the scaling
analysis above, U0 decreases only slowly as aM increases.
Equation (3) combined with (4) describes a generalized

Hubbard model on a triangular lattice. The isolated band is
fully occupied when the TMD bilayer is charge neutral. By
inducing hole carriers, the band becomes partially occupied.
When the isolated band is completely emptied by hole
doping, the carrier density is nM ¼ 2=ð ffiffiffi

3
p

a2M=2Þ, where
the factor of 2 accounts for the Hubbard model spin
degeneracy. We find that nM ¼ ð0.64 × 1012Þðθ½°�Þ2 cm−2,
implying that the full range of band fillings is accessible by
electrical gating for θ less than ∼4°. In the following, we
discuss possible moiré band ground states at 1=2 and 3=4
hole doping.
Half filling.—When the isolated band is half filled, there is

one electron per moiré unit cell. As illustrated in Fig. 3(a),
U0 ≫ t1 is satisfied even for a relatively large dielectric
constant employed to obtain these estimates. The strong on-
site repulsion suppresses double occupation of moiré lattice
sites and gives rise to a Mott insulator ground state with only

FIG. 2. (a) Moiré bands at twist angle θ ¼ 2.0°. The red dashed
line is a tight-binding-model fit to the highest valence band that
includes hopping up to the third nearest neighbor. (b) Density of
states as a function of the hole filling factor nh=nM (bottom) and
the hole density nh (top). (c) The Wannier function wðrÞ
associated with the highest-energy band in (a). wðrÞ is centered
on one of the moiré potential maxima positions. The orange lines
are the links of the moiré triangular lattice. (d) Hopping param-
eters tn vs neighbor number n as a function of moiré period aM
(bottom) and twist angle θ (top).

FIG. 3. (a) Hubbard model repulsive interaction parameters
ϵUn, and (b) spin exchange interactions Jn as a function of moiré
period aM and twist angle θ. The insets of (a) and (b),
respectively, show the ratios U0=t1 and J2=J1. The semiconduc-
tor background dielectric constant ϵ was set to 10 for the
evaluation of Un. Smaller effective values of ϵ are applicable
when the dielectric environment is engineered to maximize
interaction strength. For example, ϵ is about 5 when hexagonal
boron nitride is used as the dielectric layer [18].
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spin d.o.f. at low energies. In the largeU0 limit, the Hubbard
model can be mapped to the spin Heisenberg model:

HS ¼
X0

R;R0
JðR0 − RÞSR · SR0 ; ð5Þ

where S is the S ¼ 1=2 spin operator, J is a spin
exchange coupling energy, and the prime on the sum indicates
that each pair of sites is counted only once. Using
t=U perturbation theory [19] to calculate the exchange
interactions up to the third nearest neighbors, we find that
J1 ¼ 4ðt21=U0Þ½1 − 7ðt1=U0Þ2�, J2 ¼ 4t22=U0 þ 4t41=U

3
0,

and J3 ¼ 4t23=U0 þ 4t41=U
3
0. Here we have expanded to

second order in t2;3, but to fourth order in t1 because
jt1j ≫ jt2;3j. The numerical values of Jn are plotted in
Fig. 3(b).
The properties of triangular-lattice Heisenberg models

have been thoroughly investigated in previous work. When
only nearest-neighbor coupling J1 is nonzero, the ground
state has three-sublattice 120° long range antiferromagnetic
order. This antiferromagnetic state becomes unstable when
the second nearest-neighbor coupling J2 exceeds a critical
value. For the quantum spin-1=2 Heisenberg model on
triangular lattice, a spin liquid phase has been found in the
parameter region 0.06≲ J2=J1 ≲ 0.17 [20,21]. As shown in
Fig. 3(b), J2=J1 exceeds 0.06 when the twist angle θ is larger
than 3.0°, which makes the spin liquid state likely to occur. In
our case, J3 is also nonzero but its small magnitude seems
unlikely to significantly alter earlier estimates of phase
boundaries. The arrival of moiré band strong correlation
physics motivates new studies of Heisenberg models with
exchange coupling to further neighbors.
3/4 filling.—At 3=4 hole doping, flatbands with only

nearest-neighbor hopping have a van Hove singularity and
the corresponding Fermi surfaces are perfectly nested. As
shown in Figs. 2(b) and 4(a), these features are largely
retained in realisticmodels because remoteneighbor hopping
is weak. The nesting vectors are b=2, where b is a first-shell
moiré reciprocal lattice vector. One candidate ground state
has the four-sublattice tetrahedral antiferromagnetic order
[22] illustrated in Fig. 4. This magnetic order fully gaps the
nested Fermi surface, and gives rise to a quantum anomalous

Hall insulator [22] with quantized Hall conductivity of e2=h
at T ¼ 0. The tetrahedral order is noncoplanar, and results in
a scalar spin chirality: χ ¼ Si · ðSj × SkÞ. Thermal fluctua-
tions at finite temperature will destroy long-range magnetic
order in two dimension. However, the chirality χ is an Ising
order parameter which can persist even at finite temperatures
and support an anomalous Hall effect. Another candidate
state has four-sublattice collinear antiferromagnetic order
with site-dependent spin moments [23]. This state has
gapless charge excitations at the Fermi energy in one spin
component only, and therefore is a half metal that supports
spin currents. In close competition with these magnetic
states, there is also an instability towards chiral d-wave
superconductivity from repulsive interactions [24,25]. In the
renormalization group analysis, d-wave superconductivity
has been found to be the leading weak coupling instability at
3=4 filling [25].
Discussion.—For twist angles smaller than around 3.5°,

the highest energy WSe2 valence moiré band provides a
realization of the triangular lattice Hubbard models. For the
special case of half-filling the system provides a realization
of quantum spin models on triangular lattices. Although the
triangular lattice is frustrated, the spin-model ground state
is a relatively conventional antiferromagnet when only
nearest-neighbor interactions are present. Our calculations
demonstrate that twist angles can be turned to regimes in
which spin-liquid states are expected. The estimated spin-
interaction energy scales are on the millielectron volt
energy scale, making the low-temperature properties of
these quantum spin systems accessible at dilution fridge
temperature scales. The competition between strongly
correlated states in the moiré band Hubbard model can
be tuned by the twist angle, the dielectric environment, and
by strain that generates anisotropy for the triangular lattice.
Furthermore, moiré band Hubbard model realizations also
allow strongly correlated electron systems to be studied in
new ways. For example by examining how the carrier
density depends on gate voltages it is possible to extract the
Hubbard model chemical potential as a function of carrier
density, and in this way to quantitatively extract, among
other properties, the size of charge gaps expected at 1=2
filling, and in some cases also at 3=4 filling.
One of the most interesting possibilities offered by TMD

moiré band systems is that of measuring spin transport
characteristics in strongly correlated electron systems and
comparing them directly with charge transport character-
istics. Single layer TMD systems can be optically driven
[26–28] into steady states with valley (and therefore spin)
dependent chemical potentials, allowing them to be used as
spin and charge reservoirs, and as spin-polarization detec-
tors. These capabilities allow for measurements of coupled
spin and charge transport in strongly correlated electron
systems, a topic of great theoretical interest [29,30], and an
important goal of cold-atom Hubbard model simulation
efforts [31–33].

hole doping 1

2

3

4

1

3

2

1

3

1

3

4

2

4

(b) (c)(a)

FIG. 4. (a) Energy contours in the moiré Brillouin zone for the
highest energy band in Fig. 2(a). (b) Magnetic order on a
triangular lattice with four-sublattice tetrahedral antiferromag-
netic order. The magnetic moment directions on the four sub-
lattices are specified by the corresponding arrows in (c).
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