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Newtonian pipe flow is known to be linearly stable at all Reynolds numbers. We report, for the first time,
a linear instability of pressure-driven pipe flow of a viscoelastic fluid, obeying the Oldroyd-B constitutive
equation commonly used to model dilute polymer solutions. The instability is shown to exist at Reynolds
numbers significantly lower than those at which transition to turbulence is typically observed for
Newtonian pipe flow. Our results qualitatively explain experimental observations of transition to turbulence
in pipe flow of dilute polymer solutions at flow rates where Newtonian turbulence is absent. The instability
discussed here should form the first stage in a hitherto unexplored dynamical pathway to turbulence in
polymer solutions. An analogous instability exists for plane Poiseuille flow.
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Since the discovery by Toms that the addition of small
amounts of a high molecular weight polymer to a Newtonian
fluid significantly reduces the pressure drop in turbulent pipe
flow [1,2], turbulent flows of dilute polymer solutions have
been widely studied for both their fundamental and industrial
importance [1–6]. Understanding the transition to turbulence
in shearing flows of viscoelastic fluids, including dilute
polymer solutions, is thus crucial [7,8]. A central question
underlying this field of study is if the laminar state is stable to
infinitesimal amplitude perturbations [7–9].
Newtonian pipe flow is known to be linearly stable at all

Reynolds numbers (Re) [10–14]. By carefully minimizing
external perturbations, laminar flow has been maintained in
experiments up to Re ∼ 100000 [15]; in contrast, when
forced with finite amplitude disturbances, transition occurs
around a Re of 2000 [16–20]. Theoretically, this subcritical
scenario is explained by the appearance, above a threshold
Re, of nontrivial three-dimensional solutions of the Navier-
Stokes equations (termed exact coherent states) which are
disconnected from the laminar state [14,19,21]. Rectilinear
shearing flows, including pipe flow, of dilute polymer
solutions are also believed to be linearly stable at all
Weissenberg numbers (Wi) in the inertialess limit
(Re ¼ 0) [9,22–24], Wi here being the ratio of the polymer
relaxation time to the flow time scale. A nonlinear
mechanism has been proposed for transition to (elastic)
turbulence in such flows, where an initial finite amplitude
perturbation induces curved streamlines, which then
become unstable to a hoop-stress-driven elastic instability
that operates at linear order in canonical curvilinear
geometries [8,25–29]. Theoretical work explaining tran-
sition, and turbulent drag reduction, at finite Re and Wi has
focused on the modification of the Newtonian scenario, by
mapping the domain of existence of the exact coherent
states in the Re-Wi plane [7,30–32]. That these finite

amplitude solutions do not exist above a critical Wi, for
fixed Re, is indicative of a distinct transition mechanism
at larger Wi [7,33]. A separate line of work has focused on
the linear transient growth of disturbances from a stable
laminar state [34–36]. The theoretical viewpoint is thus
rooted in the (assumed) linear stability of the laminar state
everywhere in the Re-Wi plane [7–9].
There have, however, been scattered observations that

point to a linear instability in pipe flow experiments
involving dilute polymer solutions. In a series of experi-
ments in the 1960s and 1970s, transition to turbulence was
observed in dilute polymer solutions, at Reynolds numbers
much lower than the Newtonian threshold by several
groups, the phenomenon being dubbed “early turbulence”
[37–46]. Later, Draad et al. [47] observed an order of
magnitude reduction in the natural (unforced) transition Re
for a polymer solution. More recently, Samanta et al. [48]
studied transition in polyacrylamide solutions, in smaller
diameter pipes, thereby accessing higher Weissenberg
numbers. In a 4 mm diameter pipe, the transition process
for concentrations lesser than 200 ppm was analogous to
the Newtonian one with forced and natural transitions
occurring at disparate Reynolds numbers. In sharp contrast,
for the 500 ppm solution, the transition occurred at
Re ∼ 800 independent of the perturbation amplitude.
Further, spatially localized structures (puffs), characteristic
of the bistability associated with the Newtonian subcritical
transition [49–51], were absent. Subsequently, this new
transitional pathway, connecting the laminar state to a novel
elastoinertial turbulent state, has been demonstrated over a
much wider parameter range [52].
Although a linear instability has occasionally been

speculated upon [7,38], the consensus in the field assumes
otherwise [8,27,29,48,53]. This assumption is sometimes
stated as a fact, for instance in Refs. [27,29,53]. Even the
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authors of Ref. [48], despite observing signatures of a linear
instability, expect the transition to be governed by a non-
linear process. Contrary to this widely held view, and for the
first time, we demonstrate a linear instability in the Re-Wi
plane. Our results offer the first theoretical explanation
of observations of early turbulence spanning decades
[37,38,48,52] and point to a novel pathway to turbulence
in viscoelastic pipe flow which has thus far remained
completely unexplored in earlier theoretical studies.
The governing system of equations for an incompress-

ible viscoelastic fluid (in nondimensional form) is

Re

� ∂
∂tþ u·∇

�
u ¼ −∇pþ 1 − β

Wi
∇·Ap þ β∇2u;∇·u ¼ 0;

ð1Þ

where u, p, and Ap are the velocity field, pressure, and the
elastic stress tensor, respectively. The relevant nondimen-
sional parameters are β ¼ μs=ðμp þ μsÞ, Wi ¼ ðUsτ=aÞ,
and Re ¼ ρUsa=ðμs þ μpÞ where μs and μp are the solvent
and polymer contributions to the viscosity, τ the relaxation
time of the polymer molecule, ρ the density of the fluid, a
the pipe radius, and Us (the centerline velocity) the
imposed velocity scale. (The Deborah number (De) is
sometimes used in the literature analogous to Wi defined
here [54–56].) The elastic stress is assumed to be governed
by the Oldroyd-B constitutive equation, corresponding to
polymer molecules in the solution being modeled as non-
interacting Hookean dumbbells. This gives Ap∝ hRRi,
where R is the dumbbell end-to-end vector and h� � �i denotes
a configurational average. The affine deformation of R,
together with linear relaxation in a time τ, leads to the
following equation for Ap [57]:

� ∂
∂tþ u·∇

�
Ap − Ap·∇u − ð∇uÞ†·Ap ¼ −

Ap − I

Wi
: ð2Þ

The Oldroyd-B model predicts a shear-rate independent
viscosity and first normal stress coefficient in viscometric
flows [57]. It has been shown to reproduce observations of
linear instabilities in polymer solutions in various curvi-
linear [26] and extensional flows [58] as well as the
inertialess nonlinear instability in rectilinear shearing flows
[8,28], and is thus appropriate for a first effort. For β ¼ 0,
Eqs. (1) and (2) reduce to the Upper Convected Maxwell
(UCM) model, with no solvent stress contribution.
The laminar pipe flow profile for an Oldroyd-B fluid is

the same as the Newtonian one, U ¼ 1 − r2. An associated
first normal stress difference, N1 ¼ 8r2Wi2, arises owing
to the polymer molecules being stretched and aligned
with the flow. Assuming infinitesimal perturbations,
u ¼ U þ u0, Ap ¼ Aþ a0, p ¼ p0 þ p0, of the normal

mode form, f0 ¼ f̂ðrÞe½ikðz−ctÞþimθ� (where k and m are
the axial and azimuthal wave numbers, respectively), and

linearizing about the aforementioned base-state, one
obtains the following eigenvalue problem for pipe flow,

Lf̂ ¼ cf̂ ;

such that c ¼ cr þ ici ≡ cðRe;Wi; k; m; βÞ where cr is the
wave speed and ci the growth rate; ci > 0 implies expo-
nentially growing normal modes. We only consider axi-
symmetric perturbations (m ¼ 0) in this Letter, since
nonaxisymmetric disturbances were found to be stable
over the parameter range considered. Two different numeri-
cal methods are used to solve the eigenvalue problem: a
spectral collocation method in which the perturbation fields
are expanded in terms of Chebyshev polynomials [59] and
a shooting method that numerically integrates the gov-
erning equations and iterates over the eigenvalue c (with a
Newton-Raphson procedure) in order to satisfy the boun-
dary conditions [13]. We have verified our numerical
schemes by reproducing earlier stability results for plane
Poiseuille flow of an Oldroyd-B fluid [60,61] and for
Newtonian pipe flow [13]. To avoid spurious modes,
convergence was checked, for both eigenvalues and eigen-
functions, with respect to N (the number of Chebyshev
polynomials in the spectral expansion) as well as against
the shooting method. The only prior work on linear stability
of viscoelastic pipe flow neglected the convected derivative
in Eq. (2) and hence is of restricted validity [62].
The eigenvalue spectrum in Fig. 1, for Re ¼ 800,

Wi ¼ 65, β ¼ 0.65, k ¼ 1, shows a single unstable mode,
multiple damped discrete modes, and a pair of continuous
spectra (these appear as balloons due to the finite discre-
tization). The continuous spectrum eigenvalues are given
by c ¼ U − i=ðkWiÞ and c ¼ U − i=ðβkWiÞ and corre-
spond to singular modes whose decay rates are set by the
polymeric stress relaxation [22,60,61,63–65]. The unstable
mode is an axisymmetric center mode propagating at a
speed close to the base-state maximum. Figure 2 shows the
associated perturbation velocity and polymer force density
(∇·a0) fields. The polymer force field is localized near the

FIG. 1. Eigenspectrum for pipe flow of an Oldroyd-B fluid for
Re ¼ 800, Wi ¼ 65, β ¼ 0.65, and k ¼ 1 (forN ¼ 200 and 400);
the inset zooms into the region around the unstable mode.
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centerline and reinforces the velocity field, leading to the
instability. The radial structure of the polymer forcing is
reminiscent of recent simulations of elastoinertial turbu-
lence (for plane Poiseuille flow) wherein regions of high
polymer stretch, localized in the gradient direction, were
observed [48,53,66].
In the limit Re;Wi → ∞ with Wi=Re1=2 (and k) fixed,

the unstable eigenfunctions become increasingly localized
in a boundary layer of OðRe−1=4Þ around the centerline
(Fig. 3). Viscous diffusion balances inertia in this boundary
layer, analogous to a Newtonian center mode [10], and for
the perturbation polymeric stress to stay comparable
requires Wi ∼OðRe1=2Þ. The instability thus requires a
balance of inertia, viscous, and elastic polymer stresses
close to the centerline. The centerline localization is in
contrast to the original Newtonian and the elastically
modified Tollmien-Schlichting instability for plane
Poiseuille flow, where the eigenfunction is localized near
the channel walls for large Re [13,60,61].
For a given polymer solution, the elasticity number

E ¼ ðWi=ReÞ and β are fixed, and independent of the
imposed flow velocity. Hence, in Fig. 4, we characterize the
instability in terms of a critical Reynolds number, Rec, as a
function of E and β. At a given E and β, Rec is found by
minimizing the threshold Re over all k. Both branches of
the neutral curve in the Re-k plane (see Fig. 4, inset) show
the expected long wavelength scaling, Re ∼Oð1=kÞ, for

k → 0. Further, Fig. 4 shows that, at a fixed β, the left
branch of the Rec − E curve is such that Rec ∝ E−3=2 with
kc ∝ E−1=2 (not shown). The right branch is almost vertical
and hence for a given β there appears to be an Ecrit such that
the instability does not exist for any Re for E > Ecrit, while
for E < Ecrit, the laminar state is always unstable at large
enough Re. As β is increased, the minima in the Rec − E
curves shift to higher E and lower Rec and the unstable
region in the Rec − E plane increases in extent.
Figure 5 shows the expected absence of the instability in

the Newtonian limit and its surprising absence in the UCM

FIG. 2. Perturbation velocity (left) and polymer force (right)
fields for the unstable mode for Re ¼ 800, Wi ¼ 65, β ¼ 0.6,
and k ¼ 1.

FIG. 3. The unstable center-mode eigenfunctions for the axial
velocity (left) and radial velocity (right) in scaled boundary-layer
coordinates in the limit Re → ∞ and Wi → ∞ for a fixed
Wi=Re1=2 (k ¼ 1 and β ¼ 0.5).

FIG. 4. The critical Reynolds number, Rec, as a function of E
for different viscosity ratios, β. The inset shows neutral curves in
the Re-k plane for β ¼ 0.8 for different E.

FIG. 5. The critical Reynolds number, Rec, as a function of the
viscosity ratio β for E ¼ 0.01. The inset shows the scaling
behavior in the dual limit E → 0, β → 1.
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limit. In the Newtonian limit (β → 1), Rec ∝ ð1 − βÞ−3=2
and kc ∝ ð1 − βÞ−1=2. The β and E scalings above may be
combined in the dual limit Eð1 − βÞ ≪ 1 and β → 1, so that
Rec∝ ½Eð1−βÞ�−3=2 and kc ∝ ½Eð1 − βÞ�−1=2 (Fig. 5 inset).
Thus, the instability survives provided E ∝ ð1 − βÞ−1,
which ensures that the perturbation polymer stress remains
of order unity. For a given Re this implies that the minimum
Wi for which the instability exists diverges in the
Newtonian limit. In all approaches to the Newtonian limit,
the axial wavelength (k−1c ) of the center mode becomes
comparable to the centerline boundary layer thickness
[Oðϵ1=2Þ, ϵ being the relevant small parameter]. For
kc ≫ 1, Rec ∝ k3c ensures a balance between inertia and
viscous stresses and, along with kc ∝ ϵ−1=2, predicts
Rec ∝ ϵ−3=2, consistent with the observed scalings.
In contrast to Fig. 5 which shows an asymptotic scaling

for Rec, for β → 1, an analysis of the spectrum for fixed Re,
E, and k, shows that the instability doesn’t persist until
the Newtonian limit. Instead, the unstable center mode
becomes stable at a finite (1 − β), eventually falling off into
the continuous spectrum with the polymer force field
becoming singular. In the UCM limit (β → 0), Rec is
shown to diverge as β−1=4 in Fig. 5, for E ¼ 0.01, but the
associated critical wave number (kc) decreases as β1=2 for
small β. The absence of the instability for β ¼ 0 reinforces
the idea that all three physical effects (inertia, the viscous
solvent stress, and the elastic polymeric stress) are essential
for the center-mode instability. This is in contrast to the
expectation that the solvent stress generally plays a
stabilizing role in elastic instabilities [26,61].
The instability is predicted to exist over a wide range of

Re. The regime Rec ∼Oð100Þ, E ∼Oð1Þ is achievable in
microfluidic devices [41,67]. For ðE; βÞ values such that Rec
is Oð2000Þ or greater, pertinent to macroscopic geometries,
the subcritical Newtonian transition might mask the linear
instability unless external perturbations are carefully mini-
mized. A natural transition Re of around 8000 was reported
by Draad et al. [47] for a 20 ppm solution of partially
hydrolyzed polyacrylamide in demineralized water (β ∼ 0.1
based on the zero shear viscosity), as opposed to the much
higher transition Re of 60000 for Newtonian fluids for their
experimental facility. Our calculations do yield an unstable
mode at the corresponding Re and β, for E ¼ 0.01, although
the strong shear thinning exhibited by the solution prevents a
quantitative comparison. Similar observations of a signifi-
cantly lower natural transition Re have been reported for
dilute solutions of polyethylene oxide [68]. The instability
also qualitatively explains the observations of “early turbu-
lence” in Refs. [37–39,41,42,45]. For the 500 ppm poly-
acrylamide solution used by Samanta et al. [48], β ¼ 0.65.
The Rec for the instability at this β is well below that at
which Newtonian turbulence sets in. This is in qualitative
agreement with the experiment where transition was reported
at Re ∼ 800. However, the minimum E required for the

center-mode instability is around 0.05, which is an order of
magnitude larger than the experimentally reported value of
0.004, based on a measurement of the relaxation time using a
capillary break-up elongational rheometer (CaBER). This
discrepancy may be attributed to the known difficulty in
associating the time inferred from CaBER measurements
to the relaxation rate relevant to the Oldroyd-B model
[67,69–72]. The (Re-Wi-β) dependent threshold of the
center-mode instability calls for a reexamination of the
expectation that early transition, even in the absence of
finite amplitude perturbations, is governed by a critical Wi,
regardless of Re [41,48]. We hope that the first theoretical
evidence for the laminar state being unstable provided by
this Letter will motivate the search for a decisive exper-
imental demonstration.
Observations of pressure-driven flow through a channel

of a polyacrylamide solution becoming turbulent at
Re ∼ 350, Wi ∼ 250, and β ¼ 0.92 were reported in
Ref. [67]. We have verified that a center-mode instability,
similar to the one described above for pipe flow, exists at
these parameter values for plane Poiseuille flow of an
Oldroyd-B fluid; the details will be reported elsewhere
[73]. Plane Couette flow was, however, found to be stable
at all Re and Wi values examined. Since the polymers are
only weakly stretched near the centerline, the center-mode
nature of the instability suggests the relative unimportance
of finite extensibility of the polymer chains. Indeed,
preliminary work using the FENE-P constitutive equation
[66,74,75], confirms this expectation [73].
The instability described in this Letter should form

the first step in a new pathway to turbulence, and the
maximum drag reduction (MDR) asymptote, in dilute
polymer solutions. The loss of bistability, characteristic
of the Newtonian scenario [20,51], implies very different
transitional dynamics. Complementing recent experimental
[52,69] and numerical efforts [53,66], ours is the first
theoretical work that points to a state of elastoinertial
turbulence (EIT) with novel spatiotemporal dynamics,
particularly at large Wi, underlying the MDR asymptote.
At the linear instability threshold, elastoinertial traveling
wave solutions, associated with the unstable center-mode
eigenfunctions, would be created in a Hopf bifurcation
from the laminar state [76,77]. These traveling wave
solutions and associated phase space structures would thus
be relevant for describing both EIT and MDR dynamics
[52,53,66,69]. The implied contrast between the state space
for viscoelastic pipe flow and the Newtonian one will have
fundamental consequences for the dynamical systems
interpretation of the maximum drag reduction state which,
currently, crucially relies on a similarity between the two
[7,30,32,53,78]. The general mechanism will also be
applicable to inertial flows of other viscoelastic fluids such
as wormlike micellar surfactant solutions which show drag
reduction [69,79].
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