
 

Light-Cone Spreading of Perturbations and the Butterfly Effect in a Classical Spin Chain

Avijit Das,1,* Saurish Chakrabarty,1,† Abhishek Dhar,1 Anupam Kundu,1 David A. Huse,2 Roderich Moessner,3

Samriddhi Sankar Ray,1 and Subhro Bhattacharjee1
1International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

2Physics Department, Princeton University, Princeton, New Jersey 08544, USA
3Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

(Received 30 March 2018; published 10 July 2018)

We find that the effects of a localized perturbation in a chaotic classical many-body system—the
classical Heisenberg chain at infinite temperature–spread ballistically with a finite speed even when the
local spin dynamics is diffusive. We study two complementary aspects of this butterfly effect: the rapid
growth of the perturbation, and its simultaneous ballistic (light-cone) spread, as characterized by the
Lyapunov exponents and the butterfly speed, respectively. We connect this to recent studies of the out-of-
time-ordered commutators (OTOC), which have been proposed as an indicator of chaos in a quantum
system.We provide a straightforward identification of the OTOCwith a natural correlator in our system and
demonstrate that many of its interesting qualitative features are present in the classical system. Finally, by
analyzing the scaling forms, we relate the growth, spread, and propagation of the perturbation with the
growth of one-dimensional interfaces described by the Kardar-Parisi-Zhang equation.
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Introduction.—The butterfly effect [1–3] is a vivid picture
for the sensitivity of a spatially extended chaotic many-body
system to arbitrarily small changes to its initial conditions. In
this picture, this exquisite sensitivity—the proverbial butter-
fly wingbeat is enough to make the difference between the
presence or absence of a tornado—perhaps takes precedence
over the fact that these changes are global—tornado activity
is toggled in a place far away from the butterfly. While this
sensitivity to initial conditions is well studied and quantified
via the (positive) Lyapunov exponents, the spatial spreading
of the perturbation has received somewhat less attention.
This spreading, if ballistic, is characterized by a butterfly
speed. Lyapunov exponents and butterfly speed thus encode
two complementary aspects of the butterfly effect.
These issues have acquired additional interest in the

context of many recent studies of scrambling of informa-
tion in quantum many body systems [4–22]. In this setting,
the out-of-time-ordered commutator (OTOC) [23,24] has
emerged as a diagnostic [5–23]: for two Hermitian oper-
ators Ŵðx; tÞ and V̂ð0; 0Þ localized around x at time t and
x ¼ 0 at time t ¼ 0 respectively, the OTOC, defined as
FðtÞ ¼ −h½Ŵðx; tÞ; V̂ð0; 0Þ�2i, estimates the effect of the
operator, Vð0; 0Þ on the measurement of operator, Wðx; tÞ.
In a class of large N gauge theories it was found that, for a
given x and t, the OTOC is generically characterized by an
exponent λ̃, and a velocity ṽB, which are, respectively, the
measure of the exponential growth and the speed of
spreading of the initially localized perturbation.
Analogous to classical dynamical systems, the former is
often identified with the largest Lyapunov exponent, and
the latter with the butterfly speed.

Interestingly, these twin features are present evenwhen the
usual probes for relaxation and equilibration in a many-body
system, the two-point functions hŴðtÞV̂ð0Þi, are diffusive
and hence do not capture the above ballistic spread. This was
observed in a study of the OTOC in a system with diffusive
energy transport—the one-dimensional Bose-Hubbard chain
[18,25] and diffusive metals [26] at finite temperature and
also in the context of random unitary circuits [27,28], which
lend themselves to a considerable degree of analytical and
numerical insight [29–31].
In this Letter, we present a detailed analysis of the

spatiotemporal evolution of the divergence of the dynami-
cal trajectories of perturbed and unperturbed systems. Our
model is a well-known classical many-body system—the
Heisenberg spin chain at high temperatures, whose
classical Hamiltonian dynamics of the spins is diffusive.
We first identify a correlator which represents a natural
classical limit of an OTOC, and turns out to be a very
simple quantity: the decrease of the correlation between the
system and its perturbed copy under time evolution. In
particular, we find that the divergence of dynamical
trajectories spreads in space ballistically. We provide an
accurate extraction of the corresponding Lyapunov expo-
nent and butterfly speed, and provide a description of the
variations in the divergence between different initial states
in terms of a Kardar-Parisi-Zhang (KPZ)-based analysis,
which yields scaling forms for the distributions.
Our work connects to earlier studies of the propagation

of chaos on coupled map lattices with discrete time
evolution [32,33], partial differential equations [34–36],
and anharmonic coupled oscillator chains [37], where the
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concept of a velocity-dependent Lyapunov exponent was
formulated [32,38,39] and related to the speed of spread of
correlations [37]. In parallel, the concrete classical limit of
the OTOC provides a natural platform to investigate the
existence and nature of intrinsic differences in spatiotem-
poral chaos between classical and quantum many-body
systems [40–42].
The Heisenberg spin chain.—We consider a one-dimen-

sional lattice of spins Sx; x ¼ 0;…; N − 1 described by the
Heisenberg Hamiltonian

H ¼ −J
XN−1

x¼0

Sx · Sxþ1; ð1Þ

where J > 0 and Sx are unit three component classical
vectors and we take periodic boundary conditions
Sx ≡ SxþN . We consider a classical precessional dynamics

dSx

dt
¼ JSx × ðSx−1 þ Sxþ1Þ ¼ fSx; Hg; ð2Þ

where the spin-Poisson bracket is defined as ff; gg ¼
P

x

P
α;β;γ ϵ

αβγSγxð∂f=∂SαxÞð∂g=∂SβxÞ for arbitrary functions
f, g of the spin variables.
Classical OTOC analogue.—We consider two spin

configurations which, at t ¼ 0, differ only at site x ¼ 0
by a rotation, ε, that is either small or infinitesimal, about an
axis n̂ ¼ ðẑ × S0Þ=jẑ × S0j (where ẑ is the unit vector
along the global z axis) such that δS0 ¼ εðn̂ × S0Þ. We
study the spreading of such a localized perturbation.
For infinitesimal ε, the change at some point x is given
by δSαxðtÞ ≈ ½∂SαxðtÞ=∂Sβ0�δSβ0 ¼ εnγϵβγνSν0½∂SαxðtÞ=∂Sβ0� ¼
εnγfSαxðtÞ; Sγ0ð0Þg. To measure the evolution of the pertur-
bation we define

2Dðx; tÞ ≔ h½δSxðtÞ�2i ≈ ε2hfSxðtÞ; n̂ · S0g2i: ð3Þ

where, throughout this Letter, h� � �i denotes averaging over
spin configurations chosen from the equilibrium distrib-
uition PðfSxgÞ ¼ e−H=T=ZðTÞ and ZðTÞ is the partition
function. Denoting the two initial spin configurations
discussed above by fSa

xðt ¼ 0Þg and fSb
xðt ¼ 0Þg, we

can obtain a simpler expression as

Dðx; tÞ ¼ 1 − hSa
xðtÞ · Sb

xðtÞi; ð4Þ

where hSa
xðtÞ · Sb

xðtÞi is the cross-correlator between the
two copies. If the dynamics is chaotic, as is known to be in
this classical spin-chain at infinite temperatures [43,44], we
expect that for any x ≠ 0, the above quantity, as a function
of time t starts from the value 0 (when the spins of the two
copies at a given x are perfectly correlated) and asymptotes
to 1 (when they are completely decorrelated). Thus Dðx; tÞ
indeed measures the spatiotemporal evolution of

decorrelation throughout the system. Apart from Dðx; tÞ,
we also calculate the usual dynamic spin-correlation
function

Cðx; tÞ ¼ hSxðtÞ · S0ð0Þi: ð5Þ

At this point, it is useful to understand the connection
between Dðx; tÞ and the OTOC. On canonical quantization
of the theory obtained by replacing the Poisson bracket
with the commutator, i.e., ff; gg → ½1=ðiℏÞ�½f; g�, we get
Dðx; tÞ → −ðε2=ℏ2ÞTr½ρTð½SxðtÞ; n̂ · S0ð0Þ�Þ2�, where Sx
are now quantum operators. This is nothing but the finite
temperature generalization of the OTOC introduced earlier
with Ŵðx; tÞ ¼ SxðtÞ and V̂ð0; 0Þ ¼ εn̂ · S0ð0Þ.
Numerical results.—We now present representative

results of our numerical simulation of the Heisenberg spin
chain with periodic boundary conditions. The simulations
were performed using a fourth-order Runge-Kutta (RK4)
numerical integration scheme for the spin dynamics. For
the numerical simulations, energy is measured in units of J.
The time step in RK4 was taken to be Δt ¼ 0.001–0.005
such that the energy per site and magnetization per site
were conserved up to ∼10−12. The configuration averaging
was done over ∼105 equilibrated initial conditions for
Cðx; tÞ and ∼104 for Dðx; tÞ. Many of the simulations had
to be performed at quadruple level machine precision.
Our first main finding, namely, ballistic propagation of

the decorrelation, is summarized in Fig. 1 which shows that
the OTOC falls sharply outside a light cone. The light cone
is specified by the lines x ¼ �vbt, where vb is the butterfly
speed. For the two systems whose decorrelation Dðx; tÞ
measures, the red region in Fig. 1 corresponds to complete
decorrelation with hSa

xðtÞ · Sb
xðtÞi ≅ 0. This also gives the

natural definition of the light-cone velocity in the sense of a
“classical Lieb-Robinson speed” [45–47] which is then
equal to the butterfly speed.

FIG. 1. Simultaneous growth and ballistic spread of a pertur-
bation in a classical Heisenberg spin chain whose spin dynamics
(Fig. 3) is diffusive at T ¼ ∞. The speed of spreading obtained
from the classical OTOC, Dðx; tÞ (see text), defines a “light
cone.” The results are shown for a perturbation at time t ¼ 0 of
size ε ¼ 10−3 at the center of a system of size L ¼ 2048.
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In Fig. 2 we plot the signal Dðx; tÞ at different times to
show the propagation of the front. As can be seen from the
scaling, the front (for x ∼ vbt) is fit well by

Dðx; tÞ ¼ ε2 exp ½2μtð1 − ðx=vbtÞ2Þ�; ð6Þ
with μ ≈ 0.494, vb ≈ 1.6417ð2Þ. The deviations in scaling
seen for x ∼ vbt arise from errors due to finite machine
precision (quadruple level precision in this case). Later [see
Fig. (5)] we shall see that working with a linearized
dynamics avoids these errors and we get a much better
collapse of data in the entire range. The scaling function is
quite accurate within the light cone but in general is only an
approximate fit for x≳ vbt. The finite butterfly speed is in
stark contrast with the entirely diffusive [48] spin dynamics
as recorded by the regular two point correlator Cðx; tÞ
[Eq. (5)] shown in Fig. 3. The characteristic signature of
diffusion—x=

ffiffi
t

p
collapse at long times—is clearly visible

in the insets of Fig. 3.
An alternate way of analyzing the data is to ask at what

time tD0
the signal attains a threshold value D0 at a given x

for a set of different realizations of random initial configu-
rations. In Fig. 4 we plot the resulting set of tD0

’s as a
function of x. Its mean grows as tD0

¼ x=vb, with vb ≈ 1.64
in accordance with Fig. 2. Importantly, there is a spread of
times for the arrival of the front leading to a distribution of
times tD0

for a given x. This distribution for different values
of x as well as its collapse indicating an x2=3 scaling of
variance of tD0

is shown in the inset of Fig. 4. Thus there are
variations between different initial states in the timing of
the front’s arrival that are of order ∼x1=3.
We next analyze the properties of the front in more detail,

starting with its exponential growth in the temporal regime

and then considering its fluctuations within a KPZ frame-
work. From the usual definition of the Lyapunov expo-
nents, we expect the quantity limϵ→0δSxðtÞ2=ϵ2 to grow
exponentially with time (at large, but finite times) as
∼e2λðS;tÞt, for any x, where the Lyapunov exponent at time
t, λðS; tÞ, may depend on the initial spin configuration fSg
of a given realization. In the limit ε → 0, it is possible to
write the linearized equation of motion for limϵ→0δSx ≔ zx,

_zx ¼ JSx × ðzx−1 þ zxþ1Þ þ Jzx × ðSx−1 þ Sxþ1Þ; ð7Þ

where S, obtained by solving the equation of motion Eq. (2)
for a given random initial configuration, acts as the
dynamic field for z. The linearized equation can then be

FIG. 2. The inset plots Dðx; tÞ as a function of x, at different
times (t ¼ 40; 50;…; 100), showing growth and ballistic propa-
gation of the perturbation front. The scaled data (main panel)
show that the front is fit well by Eq. (6) with μ ¼ 0.494 and
vb ¼ 1.642 near x ∼ vbt. Here ϵ ¼ 10−8 and averaging was done
over 2 × 104 realizations.

FIG. 3. The spatial profile ofCðx; tÞ [Eq. (5)] at different times t
for a system of size L ¼ 512 at T ¼ ∞ with averaging over 105

initial conditions. The left inset shows a collapse of the data after
a diffusive scaling of x=

ffiffi
t

p
while the right inset shows the

resultant t−1=2 scaling of the autocorrelation.

FIG. 4. The main panel shows tD0
(defined in the main text) as a

function of x, for D0 ¼ 100ϵ ¼ 0.1 and different initial spin
configurations (gray scatter). The mean (black connected data
points) over 104 configurations is also shown and has a slope
≈1=½1.6417ð2Þ�. The upper inset shows the distribution of tD0

at
space points x ¼ 100; 200;…; 700, while the lower inset shows
collapse of the distributions with a width scaling as ∼x1=3. The
dotted curve in the lower inset is the Gaussian fit to the
fluctuations at x ¼ 600.
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used to obtain the Lyapunov exponent. By sampling random
initial configurations, we can then define an average expo-
nent λLðtÞ ¼ hλðS; tÞi. Given [from Eq. (4)], Dðx; tÞ ¼
h½δSxðtÞ�2i=2, we expect limϵ→0Dðx; tÞ=ϵ2 to grow expo-
nentially with time as∼e2λDðtÞt. However, the rate of growth,
quantified by λDðtÞ is in general different from λLðtÞ, due to
the difference in the order of averaging. A straightforward
application of Jensen’s inequality [49] gives λLðtÞ ≤ λDðtÞ at
any finite time where the two values become equal in the
limit t → ∞ as the width of the distribution of λðS; tÞ
decreases as t−2=3 (see below).
Figure 5 compares the numerical results of the linearized

and nonlinear equations of motion, which confirms the
above expectations. In the limit t → ∞, we find from linear
extrapolation of our data λLð∞Þ ¼ λDð∞Þ ≔ λ ≈ 0.492ð5Þ.
This compares well with the value of λ ≈ 0.47 reported
earlier [43]. For any small but finite ε, Dðx; tÞ would
eventually saturate to the value 1, when decorrelation is
complete [see Eq. (4)]. The time for saturation goes as
∼ − ln ε=λ. Hence, the exponential growth regime lasts
longer for smaller ε. This can be seen in Fig. 5 where we
also plot the results from the nonlinear dynamics for values
of ε ¼ 10−4; 10−6, and 10−8. The inset shows that for the
linearized dynamics, the scaling form in Eq. (6) holds
accurately over the entire time range, with μ ≈ λD. This
means that we can identify a velocity dependent Lyapunov

exponent through the relation Dðx ¼ vt; tÞ ∼ e2μðvÞt, with
μðvÞ ¼ λD½1 − ðv=vbÞ2� to a very good approximation. For
the nonlinear dynamics, as seen in Fig. 2, the scaling form
holds only for x ∼ vbt.
We now turn to the issue of realization to realization

fluctuation of the wave front and the finite variance in the
arrival times tD0

, at a given x [Fig. 4]. We define

hðx; tÞ ¼ lim
ϵ→0

log½δS2ðx; tÞ=2ϵ2�=2 ð8Þ

(where we no longer average over initial configurations)
and calculate hðx; tÞ using the linearized equation of
motion [Eq. (7)] for zx. Our results so far suggest that

hðx ¼ vt; tÞ ¼ tμðvÞ þ t1=3ηðx; tÞ; ð9Þ

where μðvÞ is the velocity-dependent Lyapunov exponent,
and η describes the fluctuations. In Fig. 6 we see that the
probability distribution of hð0; tÞ shows a clear t1=3 scaling
as mentioned above.
The above observation leads us to interpret the dynamics

of hðx; tÞ as similar to the problem of interface growth [50]
with hðx; tÞ as the “height function.” In particular, our
numerical results for both hðx; tÞ and Dðx; tÞ are consistent
with the growth of height, as predicted from the KPZ
equation for the so-called “wedge” initial conditions [51].
This would then suggest that the variable η follows a Tracy-
Widom distribution. However, our system should differ
from KPZ in that the noise from the chaos should have
power-law correlations in time due to the diffusing con-
served energy and magnetization densities. The distribu-
tions in the Fig. 4 inset and Fig. 6 are found to be more
symmetric than Tracy-Widom and closer to Gaussians. The
reasons for this are at present unclear.

FIG. 5. (a) Plot of ln½Dðx; tÞ=ε2�=ð2tÞ versus t at x ¼ 0 (black),
32,64,96,128(magenta), for ε ¼ 10−4 (thick dotted lines), ε ¼
10−6 (dashed lines) and ε ¼ 10−8 (thin dotted lines), for L ¼
1024 from solving the nonlinear Equation of motion [Eq. (2)].
The solid lines are results from the linearized dynamics and
correspond to the limit ϵ → 0 and hence gives λD (see text). The
dashed orange line corresponds to hln½δS2ðx; tÞ=2ε2�i=ð2tÞ,
obtained from the linearized dynamics for x ¼ 0 and we see
the slightly different saturation value corresponding to λL (see
text). (b) Inset plots the results for the linearized dynamics for
x ¼ 32, 64, 96, 128 on scaling the time axis by x. The collapsed
data approximately fits the solid line corresponding to the scaling
form Eq. (6) with μ ≈ 0.494, vb ≈ 1.64.
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FIG. 6. Distribution of the “height” variable hðx; tÞ ¼
log½δS2ðx; tÞ=ϵ2�=2 at x ¼ 0. The inset shows the distribution
of hð0; tÞ at different times while the main plot shows the collpase
of data obtained after a t1=3 scaling.
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Summary.—We have studied the butterfly effect in a
classical Heisenberg spin chain at infinite temperature and
have shown that a systematic understanding of this effect
includes two simultaneous, but logically complementary
aspects—the exponential growth and ballistic spread of an
infinitesimal local perturbation determined by the
Lyapunov exponents and the butterfly speed. Both effects
are quantified by an appropriately defined measure that is
naturally related to the OTOC recently studied in context of
scrambling in quantum many-body systems [9–12,
14–16,24,52–55]. Though we have presented infinite
temperature results, the above features of the butterfly
effect survive at finite T=J ≫ 1. We have obtained the
scaling-form of the fluctuations of the propagation front via
the KPZ model for interface growth. Notably, the above
ballistic spread of perturbation is present even while the
usual two-point dynamic spin correlator shows diffusion
and hence does not reflect correlations spreading with the
butterfly speed. A natural question then pertains to the
nature of correlators that are directly sensitive to this
ballistic effect. A closely related desideratum is an ana-
lytical derivation of the equation of motion for the
propagating ballistic front. The features reported here for
the nearest neighbor spin chain are expected to survive in
the presence of further neighbor couplings, albeit, with
different values for λ and vb. Such issues and particularly
the effect of long-range spin exchanges form interesting
future avenues of research, particularly the latter, where the
ballistic effects may not survive.
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