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The discrimination of two nonorthogonal states is a fundamental element for secure and efficient
communication. Quantum measurements of nonorthogonal coherent states can enhance information transfer
beyond the limits of conventional technologies. We demonstrate a strategy for binary state discrimination
based on optimized single-shot measurements with photon number resolving detection with a finite number
resolution. This strategy enables a high degree of robustness to noise and imperfections while being scalable
to high rates and, in principle, allows for surpassing the quantum noise limit (QNL) in practical situations.
These features make the strategy inherently compatible with high-bandwidth communication and quantum
information applications, providing advantages over the QNL under realistic conditions.
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The realization of quantum technologies that can provide
advantages over conventional ones is central in quantum
information. Discrimination measurements of nonorthogo-
nal coherent states is an integral part of quantum commu-
nication protocols [1–10] and can assist quantum-state
preparation and detection [11,12], entanglement generation
[13], and computing [14,15]. Moreover, optimized measure-
ments for the discrimination of coherent states with different
phases can achieve sensitivities beyond the ideal limit for
conventional technologies, called the quantum noise limit
(QNL), and allow for approaching the ultimate limits of
information transfer [16–18]. However, unavoidable noise
and imperfections in realistic situations compromise the
sensitivity performance of these optimized strategies and put
in question their advantages over conventional technologies
in real-world applications. Furthermore, in order to be
realistic alternatives to conventional technologies, these
new measurement strategies should allow for scalability
and be compatible with high-bandwidth communications,
while requiring low complexity for their implementation.
Discrimination strategies based on complex feedback

operations that approach the ultimate bound for coherent
state discrimination, the Helstrom bound [19], have been
proposed [8,20–27] and experimentally demonstrated
[28–31]. However, these strategies are not readily compat-
ible with current communication technologies since feed-
back operations limit the overall achievable communication
bandwidth. On the other hand, discrimination strategies
based on single-shot measurements that do not require
feedback [32–37] can still provide advantages over the
QNL, while being compatible with high-bandwidth com-
munications. However, these strategies are not inherently
robust against noise and imperfections of realistic commu-
nication channels, which has limited their performance
below the QNL to very small power ranges [34,35].

Here, we investigate and experimentally demonstrate a
strategy for the discrimination of two nonorthogonal
states that combines the simplicity of optimized
single-shot measurements with photon number resolution
to provide robustness against noise. Photon number
resolving (PNR) detection was proposed [38] and exper-
imentally demonstrated [39] to enable probabilistic
discrimination of two nonorthogonal states based on
measurements with postselection outperforming a post-
selected homodyne measurement. Here, we demonstrate
that the use of PNR detection enables robustness against
noise and imperfections in deterministic measurements for
minimum-error discrimination. This strategy is compat-
ible with high-bandwidth communication and information
technologies and provides advantages over the homodyne
limit (the QNL) at arbitrary input powers, even in the
presence of realistic noise and imperfections. Unlike
previous single-shot strategies of two states with on-off
detection for minimum-error discrimination [32–34], our
strategy uses PNR detection, which increases the number
of possible outcomes from photon detections. This exten-
sion provides a dramatic increase in robustness to exper-
imental imperfections analogous to feedback strategies for
multiple states [30] but retains the simplicity of single-
shot measurements. Our proof-of-principle experimental
demonstration of the generalized strategy outperforms
the QNL adjusted for our system detection efficiency. We
observe that increasing the photon number resolution of
the detector allows for extending discrimination below the
QNL to higher input power levels in situations with noise
and imperfections.
Robust measurement.—Figure 1(a) shows the robust

PNR optimized discrimination strategy. An input state
jψi ∈ fj − αi; jαig, where α is real and positive, is dis-
placed in phase space to D̂ðβÞjψi, where the displacement
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D̂ðβÞ is implemented with a strong local oscillator (LO)
field and a high-transmittance beam splitter [40]. The
displaced state is then detected by a PNR detector with
outcomes corresponding to projections onto Fock states:
Π̂n ¼ jnihnj. The number of photons that a realistic PNR
detector can resolve before acting as a threshold detector
is referred to as the photon number resolution PNRðmÞ,
where m represents the maximum number of resolved
photons [30]. For example, a PNR detector with PNR(3)
has four measurement outcomes corresponding to
f0; 1; 2; 3þg photons. Here, 3þ refers to the number of
photons detected being three or greater.
The discrimination strategy uses the maximum a poste-

riori probability (MAP) criterion to estimate the input state
based on the detection outcomes and the PNR resolutionm.
Given the number of detected photons (n), the number
resolution (m) of the detector, and the displacement field β,
the strategy’s decision about the input state corresponds to
the state with the highest conditional posterior probability
Pð�αjβ; n; mÞ, which is obtained through Bayes’ rule:

Pð�αjβ; n; mÞPðn;mÞ ¼ Pðnj � α; β; mÞPð�αÞ: ð1Þ

Here, Pð�αÞ is the prior probability of input state j � αi,
which is set to 0.5 for our experiment. Pðnj � α; β; mÞ is
the conditional probability of detecting n photons given the
input state is displaced by β with a strategy with PNRðmÞ,
and Pðn;mÞ is the probability of detecting n photons:
Pðn;mÞ ¼ ½Pðnj − α; β; mÞ þ Pðnjα; β; mÞ�=2. Using this

strategy, the probability of error for a discrimination
measurement with PNRðmÞ becomes (see the
Supplemental Material [41])

PEðα; β; mÞ ¼ 1 − 1

2

Xm
k¼0

maxðfPðkj � α; β; mÞgÞ: ð2Þ

Here, the conditional probabilities Pðkj � α; β; mÞ of
detecting k photons given the input state is displaced by β
are given by the Poisson probabilities:

Pðkj � α; β; mÞ ¼
8<
:

hnik�
k! e−hni� ; k < m

1 −
P

m−1
l¼0

hnil�
l! e−hni� ; k ¼ m

ð3Þ

hni� ¼ jhβj � αij2 ¼ jαj2 þ jβj2 � 2ξjαjjβj; ð4Þ

where ξ is the interference visibility of the displacement
operation. The reduction of visibility quantifies the noise
and imperfections that affect the discrimination process
[30] and has limited the performance of binary discrimi-
nation measurements below the QNL to very small power
ranges [28,34,35].
For a given discrimination strategy with PNRðmÞ, the

amplitude jβj of the displacement operation can then be
optimized to minimize the probability of error PEðα; β; mÞ
for a fixed mean-photon number of the input state jαj2:

∂PEðα; β; mÞ
∂β

����
βoptðmÞ

¼ 0: ð5Þ

This optimization results in discrimination strategies which
allow for surpassing the QNL at high input powers.
Figure 1(b) shows the ratio of the optimal displacement

amplitude jβoptðmÞj to the amplitude of the input state jαj,
jβoptðmÞj=jαj for strategies with PNR(1), PNR(2), and
PNR(3) with detection efficiency η ¼ 1 and a level of
noise and imperfections characterized by a reduced vis-
ibility of ξ ¼ 0.998. In general, the optimal displacement
ratios converge to 1 as jαj2 increases, which corresponds to
displacing the input state to the vacuum state. However, as
the photon number resolution m is increased, the optimal
displacements show sharp jumps at jαj2 ≈ 1.5 and 3. These
jumps come from solving the minimization in Eq. (5)
for strategies with different m at these points, with m − 1
jumps for a strategy with PNRðmÞ (see the Supplemental
Material [41]).
Figure 1(c) shows the error probabilities (solid lines) for

strategies with PNR(1)–PNR(5) with η ¼ 1 and ξ ¼ 0.998,
together with the homodyne limit at the QNL (dashed grey
line) given by

Phom ¼ 1

2
½1 − erfð

ffiffiffi
2

p
αÞ�; ð6Þ
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FIG. 1. Robust PNR optimized discrimination strategy. (a) The
input state jψi ∈ fjαi; j − αig is displaced to D̂ðβÞjψi using a
strong local oscillator (LO) field. A photon number resolving
(PNR) detector with finite photon number resolution PNRðmÞ is
used for the discrimination of the input state jψi in the presence
of noise and imperfections, characterized by the reduction of
visibility (ξ) of the displacement operation. (b) Optimal dis-
placement ratios jβoptðmÞj=jαj that minimize the probability of
error for strategies with PNR(1), PNR(2), and PNR(3) with
ξ ¼ 0.998. (c) Probability of error for the discrimination of two
coherent states fjαi; j − αig with strategies with different number
resolutions PNRðmÞ with detection efficiency η ¼ 1.0 and
ξ ¼ 0.998. Higher photon number resolution extends discrimi-
nation below the QNL (grey, dashed) at high powers in the
presence of noise and imperfections. The Helstrom bound (black,
dashed) and the expected error for the noiseless PNR(1) strategy
(red, dotted) with visibility ξ ¼ 1.0 are shown for reference.
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the Helstrom bound (dashed black line) given by

Phels ¼
1

2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expð−4jαj2Þ

q
�; ð7Þ

and an ideal PNR(1) strategy with ξ ¼ 1 (dotted red line).
We observe that the points where jumps in optimal
displacement ratio take place correspond to points at which
a certain PNRðmÞ strategy starts to degrade and splits off
from the higher PNRðmÞ strategies. This degradation in
performance is caused by noise and imperfections charac-
terized by the nonideal visibility of the displacement
operation. We note that while the ideal PNR(1) measure-
ment performs very close to the Helstrom bound, nonideal
visibility has a dramatic effect on its performance, which
severely limits the power range at which a strategy with
PNR(1) can surpass the QNL [34,35]. On the other hand,
strategies with PNR detection provide robustness to noise
and imperfections resulting in nonideal visibility and can
extend discrimination below the QNL to higher powers as
m is increased. This shows that single-shot PNR receivers
can beat the QNL under realistic conditions, mitigating the
effects of noise and imperfections without requiring feed-
back operations, as long as the photon number resolution of
the detector is high enough.
Experimental demonstration.—Figure 2 shows the

experimental setup for the demonstration of the optimized
discrimination strategy with PNR detection. A HeNe laser
at 633 nm and an acousto-optic modulator (AOM) prepare

26 μs light pulses at a rate of 11.7 kHz, which are sent to an
interferometric setup. A fiber-coupled phase modulator
PM1 and an attenuator prepare the input state jψi with a
phase of ϕ ¼ 0 or ϕ ¼ π and with a mean photon number
jαj2 calibrated with a transfer standard detector (Det) [42].
A phase modulator PM2 and an amplitude modulator
AM prepare the optimal displacement field βoptðmÞ for a
specific strategy with specific resolution PNRðmÞ from
Eq. (7). The AM is controlled by an 8-bit register from a
field-programmable gate array (FPGA) which is converted
into an analog voltage with a digital-to-analog converter
(DAC), allowing preparation of the amplitude of βoptðmÞ
with less than 1% error [31]. We estimate the error in the
relative phase of the LO and the input state to be about
0.05 radians by observing the interference between these
fields used for phase calibration [22]. The optimized
displacement operation D̂(βoptðmÞ) is performed with a
99=1 fiber beam splitter (FBS). The displaced state
D̂ðβoptÞj � αi is then detected by an avalanche photodiode
(APD), and the detection outcomes are collected by the
FPGA. We use the APD as a number resolving detector
[30,39,43] with a nonzero probability of afterpulsing PAP
(see the Supplemental Material for details [41]).
Phase stability of the interferometer is achieved with a

feedback loop in a 33% duty cycle with a frequency
stabilized 780 nm laser, a differential detector (DD), and
a piezo (PZT) on the back of a mirror [31]. Our experiment
achieves a system detection efficiency η ¼ 0.72ð1Þ, vis-
ibility ξ ¼ 0.998ð1Þ, dark count rate ν ¼ 3.6 × 10−3ð2Þ,
and an afterpulsing probability PAP ¼ 1.10 × 10−2ð2Þ.
Results and Discussion.—Figure 3 shows the experi-

mental results for the single-shot discrimination strategy
with photon number resolving detection PNRðmÞ for
m ¼ 1, 2, 3, 4, in solid circles, with error bars representing
1-σ statistical standard deviation. The colored dashed
lines show the theoretical predictions with detection effi-
ciency η ¼ 0.72, visibility ξ ¼ 0.998, dark count rate ν¼
3.6×10−3, and afterpulsing probability PAP¼1.10×10−2.
Included are the ideal homodyne limit at the QNL, the QNL
for the same detection efficiency as our implementation,
η ¼ 0.72, and the Helstrom bound. We observe that while
the strategy with PNR(1) surpasses the adjusted QNL with
η ¼ 0.72, it only does so up to a mean photon number of
jαj2 ≈ 2. On the other hand, strategies with photon number
resolution PNRðmÞ become robust to realistic noise and
imperfections, enabling discrimination below the adjusted
QNL for larger jαj by increasing the photon number
resolution PNRðmÞ. The comparison with homodyne
detection in a system with η ¼ 0.72 allows us to investigate
the performance of the robust PNR strategy under noise and
imperfections including nonideal visibility and dark counts
and excluding the effect of detection efficiency. However,
we note that state-of-the-art homodyne detectors have near-
unity detection efficiency [44,45]. In the Supplemental

SMF

SMF

PM
1

PM
2

AM

99/1

FBS

DM
2

FM

HeNe Laser
633 nm

Lock Laser
780 nm

APD

DM
1

50/50
BS

State Preparation

PZT

(d=3)

APD clicksn
Attn

opt
)

LO Preparation opt
||

Det

FPGA

A
AOM

FIG. 2. Experimental setup. Coherent-state pulses from a HeNe
laser and an acousto-optic modulator (AOM) are incident in an
unbalanced Mach-Zehnder interferometer. Fiber-coupled phase
modulator PM1 prepares the input state jψi ∈ fj − αi; jαig.
Phase (PM2) and amplitude (AM) modulators prepare the
optimized displacement field βoptðmÞ. A 99=1 fiber beam splitter
(FBS) implements the optimal displacement operation
D̂ðβoptðmÞÞ for a given strategy with specific PNRðmÞ. An
avalanche photodiode (APD) is used as a PNR detector, and a
field-programmable gate array (FPGA) collects the detector
outcomes and controls the optimized displacements (see text
for details). (DM), dichroic mirror; (Att), attenuator; (SMF),
single-mode fiber; (DM), flip mirror; (DD), differential detector;
(PZT), piezo; (Det), calibrated detector; (BS) beam splitter.
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Material [41], we include comparisons with state-of-the-art
detectors with and without considering system losses.
We investigated the expected advantages of PNR strat-

egies over the QNL under realistic conditions with different
visibilities. Figures 4(a)–4(f) show the ratio of the error
probability to the QNL (homodyne limit) in a logarithmic
scale for strategies with PNR(1), PNR(3), and PNR(5) as a
function of visibility ξ and mean photon number jαj2 for
detection efficiencies η ¼ 0.85 [Fig. 4(a)–4(c)] and η ¼ 1
[Fig. 4(d)–4(f)]. The case η ¼ 0.85 corresponds to the
expected performance of our system with losses of about
12% and using a superconducting PNR detector with
detection efficiency of η ¼ 0.98 [46,47] and negligible
dark counts. We observe that even in a realistic case with
η ¼ 0.85 and moderate visibility, it is possible to achieve
discrimination below the ideal QNL, blue regions with
PEðmÞ < Phom. Moreover, increasing PNRðmÞ signifi-
cantly extends the regions in the parameter space of jαj2
and ξ at which discrimination below the QNL can be
achieved. Solid black lines show the boundary PEðmÞ ¼
Phom. Dashed black lines mark the boundaries for strategies
with smaller photon number resolution, which shows that
discrimination strategies with higher PNRðmÞ achieve
higher improvements over the QNL. Figure 4(g) shows
the attainable reduction of error rate compared to the QNL
for PNR(1), PNR(5), and PNR(10) [46,48] expected with a
realistic visibility of ξ ¼ 0.999 for cases η ¼ 0.85 and
η ¼ 1. We observe a substantial improvement over the
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FIG. 3. Experimental results. Experimental error probability for
strategies with PNRðmÞ for m ¼ 1, 2, 3, 4 (solid circles) with
error bars representing 1-σ statistical standard deviation. Each
data point is the result of five experimental runs for each mean
photon number and PNRðmÞ (see the Supplemental Material for
details [41]). Also shown are the Helstrom bound (solid blue
line), the QNL given by a perfect homodyne measurement (solid
black line), and a homodyne measurement adjusted for our
system detection efficiency of η ¼ 0.72ð1Þ (dashed black line).
The theoretical predictions with η ¼ 0.72, ξ ¼ 0.998, dark
count rate ν ¼ 3.6 × 10−3, and afterpulsing probability PAP ¼
1.10 × 10−2 (colored dashed lines) show very good agreement
with the experimental observations.
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corresponds to the expected performance of our system with losses of about 12% using a superconducting PNR detector with η ¼ 0.98
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Green dashed lines in (a)–(c) with η ¼ 0.85 indicate the expected performance with our experimental visibility of ξ ¼ 0.998. (f) Attainable
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η ¼ 0.85 and about 3.5 × 103 times at jαj2 ¼ 18 for η ¼ 1. Larger improvements are expected for higher m and higher visibilities.
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QNL with PNR(10) of about 5 times at jαj2 ¼ 21 for
η ¼ 0.85 and 3.5 × 103 times at jαj2 ¼ 18 for η ¼ 1.
Moreover, this improvement increases with number reso-
lution beyond 10 photons at higher optical energies, which
is achievable with current PNR technologies [48].
Additional numerical studies included in the

Supplemental Material [41] show that PNR does not only
provide robustness to noise resulting in reduced visibility but
also to other sources of imperfections, such as dark counts of
nonideal detectors. Moreover, our studies indicate that PNR
detection, when used in intensity-modulated alphabets such
as on-off keying, also provides robustness to dark counts.
These optimized PNR discrimination strategies complement
the work in measurements with PNR for two coherent states
used to assist quantum key distribution [39] and to allow for
phase monitoring [49] and for increasing the information
extracted from a measurement [50].
Conclusion.—We investigate and experimentally dem-

onstrate a robust strategy for the discrimination of two
nonorthogonal coherent states with minimum error based
on single-shot optimized measurements with photon num-
ber resolving (PNR) detection. This PNR strategy general-
izes near-optimal single-shot strategies of coherent states
by increasing the number resolution to enable discrimina-
tion below the QNL under realistic conditions with noise
and imperfections. Our experimental demonstration shows
that this PNR strategy provides robustness to system
nonidealities and allows for surpassing the QNL adjusted
for our system detection efficiency. Moreover, this PNR
strategy also provides robustness to nonidealities of detec-
tors such as dark counts for both phase encoding and
intensity encoding schemes. Because of its robustness and
the simplicity of single-shot measurements, this new
strategy is inherently compatible with high-bandwidth
communication technologies while performing below the
QNL under realistic conditions. We expect that our work
will motivate further developments in fast PNR detectors
and in applications of these robust measurements in
quantum information and communications.
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