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The ability to coherently control mechanical systems with optical fields has made great strides over the
past decade, and now includes the use of photon counting techniques to detect the nonclassical nature of
mechanical states. These techniques may soon be used to perform an optomechanical Bell test, hence
highlighting the potential of cavity optomechanics for device-independent quantum information process-
ing. Here, we propose a witness which reveals optomechanical entanglement without any constraint on the
global detection efficiencies in a setup allowing one to test a Bell inequality. While our witness relies on a
well-defined description and correct experimental calibration of the measurements, it does not need a
detailed knowledge of the functioning of the optomechanical system. A feasibility study including
dominant sources of noise and loss shows that it can readily be used to reveal optomechanical entanglement
in present-day experiments with photonic crystal nanobeam resonators.
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Introduction.—Bell tests have initially been proposed to
show that correlations between the results of measurements
performed on two separated systems cannot be reproduced
by classical strategies [1]. They have been used to show the
limit of classical physics as a complete description of small
systems involving two atoms [2,3] or two photons [4,5].
This naturally raises the question of a Bell inequality
violation with larger systems. Concrete proposals have
been made recently along this line to realise Bell tests with
cavity opto- and electromechanical systems [6–8].
Cavity optomechanics is at the core of intense research

where the cavity field is used to control the motion of a
mechanical system via radiation pressure. While initial
efforts have focused on the cooling of mechanical oscil-
lators down to the ground state [9–11], impressive results
including the detection of electro- [12] and optomechanical
[13,14] nonclassical correlations and entanglement
between two mechanical systems [15,16] are now sug-
gesting that cavity optomechanics could serve as a building
block of future quantum networks [17] for the processing
and storage of quantum information [18,19]. If one is to
show that cavity optomechanics can form the cornerstone
of future quantum networks, it is crucial to prove that it is
qualified for all possible uses of such networks. This means
that the qualification must be device independent [20], that
is, it cannot rely on a physical description of the actual
implementation. A particular model using seemingly harm-
less assumptions, on the underlying Hilbert space dimen-
sion for instance, can completely corrupt the security
guarantees that are offered by quantum networks for secure
communications over long distances [21,22]. Device-
independent schemes have been derived to certify all the
building blocks of quantum networks that can be used to
create, store, or process quantum information [23]. They

could be directly implemented from the Bell tests proposed
in Refs. [6,7]. Optomechanical Bell tests are thus not only
of fundamental interest but are resources to certify the
usefulness of optomechanical systems for long distance
quantum communication with device-independent security
guarantees.
The violation of a Bell inequality as proposed in

Refs. [6–8] is, however, not trivial. Reference [6] uses a
cavity optomechanical system in the resolved sideband
regime where the mechanical frequency is larger than the
cavity decay rate. Once cooled, the mechanical system is
excited by laser light resonant with the blue sideband; see
Fig. 1. Photons of the laser can decay into phonon-photon
pairs, the photon being resonant with the cavity frequency
and the phonon corresponding to a single excitation of the
vibrational mode of the mechanical system. Energy con-
servation ensures that for each phononic excitation of the
mechanical state, the cavity mode gets populated with a
photonic excitation. These quantum correlations between
phonon and photon numbers are strong enough to violate a
Bell inequality [6,7]. The way to show this consists first in
mapping the phononic excitations to cavity photons using
laser light driving the red optomechanical sideband. This
leads to a two-mode photonic state, where each mode can
subsequently be detected with photon counting techniques
preceded by displacement operations in phase space. By
changing the amplitude and phase of the local displace-
ments, the Bell-Clauser-Horne-Shimony-Holt (Bell-
CHSH) [24] inequality can be violated as long as the
global detection efficiency is higher than 67%. While
several experiments have been realized combining cavity
optomechanics in the revolved-sideband regime and photon
counting [13–15,25], the requirement on the efficiency
remains very challenging to meet.
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Here we propose the first step of an entire research
program aiming to violate a Bell inequality with optome-
chanical systems, that is, we propose a witness for revealing
optomechanical entanglement in the same scenario. In
opposition to Bell tests (see Ref. [26], Sec. A), our witness
is not device independent but assumes a detailed descrip-
tion and correct experimental calibration of measurements.
Additional measurements are also taken locally to get
information about the photon number distribution. This
allows us to relax the requirement on the detection
efficiency, even without any assumptions about the mea-
sured state. A feasibility study shows that our witness can
readily be used to reveal optomechanical entanglement in
present-day experiments with photonic crystal nanobeam
resonators.
Temporal evolution of the cavity field and mechanical

system.—Let us recall the physics of optomechanical
systems in the resolved sideband and weak coupling
regime, which has been presented, at least partially, in
various Refs. [6,19,29–31]. We consider the optical and
mechanical modes of an optomechanical cavity with
frequencies ωc andΩm, respectively. The bosonic operators
associated to the optical mode are called a and a† while we
use b and b† for the mechanical mode. g0 denotes the bare
optomechanical coupling rate, κ and γ the cavity and
mechanical decay rates. The cavity optomechanical system
is laser driven on the lower or upper mechanical sideband
with corresponding frequencies ω� ¼ ωc � Ωm. The laser
powers are labeled P�, respectively. The full Hamiltonian

includes the uncoupled cavity and mechanical systems
H0 ¼ ℏωca†aþ ℏΩmb†b, the optomechanical coupling
−ℏg0a†aðb† þ bÞ, and the coupling between the cavity
mode and the driving laser ℏðs��eiω�taþ s�e−iω�ta†Þ with
js�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κP�=ℏω�

p
. In the interaction picture with respect

to H0 and focusing on the weak coupling g0 ≪ κ and
resolved-sideband κ ≪ Ωm regimes, the temporal evolution
is given by a set of effective Langevin equations [19]

da
dt

¼ i
ℏ
½H�; a� −

κ

2
aþ ffiffiffi

κ
p

ain;
db
dt

¼ i
ℏ
½H�; b�; ð1Þ

with Hþ ¼ −ℏg0
ffiffiffiffiffiffi
nþ

p ða†b† þ H:c:Þ and H− ¼
−ℏg0

ffiffiffiffiffiffi
n−

p ða†b þ H:c:Þ for a blue and red detuned driving
laser, respectively. n� ¼ ðjs�j2Þ=ðΩ2

m þ κ2=4Þ is the intra-
cavity photon number. ain is the noise entering the cavity.
The mechanical decay and corresponding thermal noise are
neglected, that is, we focus on timescales smaller than the
thermal decoherence time of the mechanical system
ðℏΩm=kBTbathγÞ, where kBTbath is the Boltzmann energy.
Phonon-photon correlations in the resolved sideband

regime.—Let us first focus on the initial step where a laser
drives the upper sideband. We use the subscript 1 for the
cavity field operators corresponding to this initial step. We
proceed with an adiabatic elimination of the cavity mode
ðda1=dtÞ ¼ 0 that is, we consider a temporal evolution
which is long compared to κ−1. Together with the input and
ouput relation, that is, a1;out ¼ −a1;in þ

ffiffiffi
κ

p
a1, we get

a1;out¼a1;inþ i
ffiffiffiffiffiffiffiffi
2g̃þ

p
b†;

db1
dt

¼ g̃þbþ i
ffiffiffiffiffiffiffiffi
2g̃þ

p
a†1;in; ð2Þ

where g̃þ ¼ ð2g20nþ=κÞ. Integrating the previous equations
and introducing the temporal modes A1;ðin=outÞðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2g̃þ=� 1 ∓ e∓2g̃þtÞ

p R
t
0 dt

0e∓g̃þt0a1;ðin=outÞðt0Þ [29] leads

to A1;outðtÞ ¼ eg̃þtA1;inðtÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2g̃þt − 1

p
b†ð0Þ,

bðtÞ ¼ eg̃þtbð0Þ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2g̃þt − 1

p
A†
1;inðtÞ. These two solutions

can be written as A1;outðtÞ ¼ U†
1ðtÞA1;inU1ðtÞ and bðtÞ ¼

U†
1ðtÞbð0ÞU1ðtÞ where the propagator U1ðtÞ is given by

U1ðtÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2g̃þt

p
A†
1;inb

†
e−g̃þtðA

†
1;inA1;inþb†bþ1Þei

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2g̃þt

p
A1;inb:

ð3Þ

When U1ðtÞ is applied on the vacuum, phonon-photon
pairs are created where the phonon number equals the
photon number, each of them following a thermal distri-
bution with mean excitation number e2g̃þt − 1. These
correlations between the phonon and photon numbers
are strong enough to violate a Bell inequality, cf. below.
Phonon-photon correlations as the basis for a Bell

inequality violation.—Consider the case where a laser
drives the lower sideband. We use the subscript 2 for the
cavity field operators corresponding to this second step.

FIG. 1. A cavity optomechanical system is made with a cavity
with frequency ωc and a mechanical oscillator with frequency
Ωm. κ, and γ are the cavity and mechanical decay rates,
respectively. We consider the resolved sideband regime where
Ωm ≫ κ. Starting with a cooled mechanical system, the cavity
optomechanical system is first driven by a laser resonant with the
blue sideband. Photon-phonon pairs are created by means of an
effective squeezing operation a†1b

† þ H:c:, the bosonic operators
a1 and b corresponding to the cavity photons and mechanical
phonons. The quantum nature of the correlations between the
cavity photon number and the phonon number can be revealed by
applying a laser resonant with the red sideband. This effectively
maps the phononic state to a photonic state through a beam
splitter interaction a†2bþ H:c: The resulting photonic state
involving two temporal modes a1 and a2 is detected with a
photon detector supplemented with a displacement operation in
phase space.
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Following the line of thought developed in the previous
paragraph while introducing g̃− ¼ ð2g20n−=κÞ, we can show
that the cavity field and photon operators evolve according
to the propagator [6,19]

U2ðtÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffiffi
e2g̃−t−1

p
A2;inb†e−g̃−tðA

†
2;inA2;in−b†bÞei

ffiffiffiffiffiffiffiffiffiffiffi
e2g̃−t−1

p
A†
2;inb: ð4Þ

This corresponds to a beam splitter-type evolution, per-
forming a conversion between the phononic and photonic
modes with probability 1 − e−2g̃−t. In the limit g̃−t → ∞,
the phononic mode is perfectly mapped to the photonic
mode A2;out and the phonon-photon correlations created in
the first step are mapped to two temporal photonic modes
A1;out and A2;out. If both the cavity and mechanical system
are in the vacuum before the laser drive, these two photonic
temporal modes are described by a vacuum squeezed state

U2ðtÞg̃−t→∞U1ðT1Þj0i ¼ e−g̃þT1e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2g̃þT1

p
A†
1;outA

†
2;out j00i.

References [32–34] have shown that such a state violates
the Bell-CHSH inequality when it is measured with photon
detection preceded by a displacement operation in phase
space, the phase and amplitude being used to change the
measurement setting. Reference [6] showed that a mini-
mum detection efficiency of ∼67% is necessary to observe
a violation of the Bell-CHSH inequality. This minimum
detection efficiency even increases if the mechanical
system is not in its ground state initially [6]. These
efficiencies include all the loss from the cavity to the
detector and are thus challenging to obtain in practice. We
show in the following sections a way around this require-
ment which consists in replacing the Bell-CHSH inequality
by a witness inequality, which assumes a physical descrip-
tion and correct experimental calibration of the measure-
ment devices.
Photon counting preceded by a displacement

operation.—We focus on the setup described before, with
which a Bell inequality is tested using photon detections
preceded by a displacement operation DðαÞ. Before pre-
senting our entanglement witness, we first comment on
such a measurement. We consider the realistic case where
the photon detector does not resolve the photon number,
that is, only two measurement results can be produced
at each run. The first result corresponds to “no-detection”
and is modelled by a projection on the vacuum j0ih0j.
The second possible result is a conclusive detection
corresponding to the projection into the orthogonal sub-
space, that is, 1 − j0ih0j. If we attribute the outcome þ1 to
a no-detection and −1 to a conclusive detection, the
observable including the displacement operation is given
by σα ¼ DðαÞ†ð2j0ih0j − 1ÞDðαÞ. In the qubit subspace
fj0i; j1ig, σ0 corresponds exactly to the Pauli matrix σz,
that is, the outcome þ1 ð−1Þ is associated to a projection
into the state j0i ðj1iÞ. When α increases, the positive-
operator valued measure (POVM) elements associated to
outcomes �1 get closer to projections in the x-y plane of

the Bloch sphere having j0i and j1i as north and south
poles, respectively [35]. For α ¼ 1, these POVM elements
are projections along nonunit vectors pointing in the x
direction, while for α ¼ i, they are noisy projections along
the y direction. This means that photon detection supple-
mented by a displacement operation performs noisy mea-
surements in the qubit space fj0i; j1ig whose direction in
the Bloch sphere can be chosen by controlling the ampli-
tude and phase of the displacement.
Witnessing phonon-photon correlations in a qubit

subspace.—In order to clarify on how to witness entangle-
ment in two-mode squeezed vacuum using local observ-
ables σα, we consider the state projection in the qubit
subspace 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jϵj2

p
ðj00i þ ϵj11iÞ. The sum of relevant

coherence terms j00ih11jþj11ih00j can be measured using
the ideal observable Mideal¼ð1=2πÞR ðcosφσxþsinφσyÞ⊗
ðcosφσx−sinφσyÞdφ. Since separable states are (i) non-
negative states and (ii) they stay non-negative under partial
transposition [36,37], these coherence terms are upper
bounded by 2minf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð0; 0Þpð1; 1Þp
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð0; 1Þpð1; 0Þp g

for two-qubit separable states. pði; jÞ is the proba-
bility for having i photons in mode A1 and j pho-
tons in A2. Any state ρ such that TrðMidealρÞ>
2minf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð0;0Þpð1;1Þp
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð0;1Þpð1;0Þp g is thus entangled.

Since pð0;1Þ¼pð1;0Þ¼0 and TrðMidealρÞ¼2ReðϵÞ=ð1þ
jϵj2Þ for a state of the form 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jϵj2

p
ðj00i þ ϵj11iÞ, the

witness observable Mideal has the potential to detect
entanglement in two-mode squeezed vacuum, in the exper-
imentally relevant regime where the squeezing is small
2g̃þT1 ≪ 1, that is, when the two-mode squeezed vacuum
is well approximated by its projection in the qubit sub-
space. This suggests that a relevant witness observable for
our purpose is

Mðα; βÞ ¼
Z

2π

0

dϕ
2π

U†
ϕðσα ⊗ σβÞUϕ; ð5Þ

where the unitary Uϕ ¼ eiϕA
†
1
A1 ⊗ e−iϕA

†
2
A2 is used to

randomize the phase of displacements through the averag-
ing over ϕ. Note that in Eq. (5), the amplitude of displace-
ments is a free parameter. Further note that we are
interested in revealing entanglement at the level of the
detection. The nonunit efficiency of the detector can be

TABLE I. The witness observable here proposed is Mðα; βÞ
(see Eq. (5). The maximum value it takes on separable states
is bounded by S⋆ðα; βÞ (see [26] Eq. (9)), that is,
maxρsepTrðMðα; βÞρsepÞ ≤ S⋆ðα; βÞ. The observed value in an
actual experiment is Q. Q − S⋆ ≤ 0 thus holds for all separable
state and a violation of this inequality certifies entanglement.

Witness
observable

Maximum value for
separable states

Observed
value

Witness
Inequality

Mðα; βÞ ≤ S⋆ðα; βÞ Qðα; βÞ Q − S⋆ ≤ 0
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seen as a loss operating on the state; i.e., the beam splitter
modeling the detector inefficiency acts before the displace-
ment operation whose amplitude is changed accordingly;
see Ref. [26] Sec. B. This allows us to derive a witness
observable with unit efficiency detection and to include the
detector efficiency at the end; see Ref. [26] Sec. C.
Witnessing phonon-photon correlations without

dimensionality restriction.—Using the property that sepa-
rable states stay positive under partial transposition, we show
inRef. [26] Sec. C that themaximummeanvalueMðα; βÞ can
take if the measured state is separable is such that

max
ρsep

½Mðα; βÞρsep� ≤ S⋆ðα; βÞ; ð6Þ

where S⋆ðα; βÞ depends on some joint probabilities pði; jÞ
for having i photons in mode A1 and j photons in A2 and
the marginal probabilities pðnA1

≥ 2Þ and pðnA2
≥ 2Þ to

have strictly more than one photon in mode A1 and A2,
respectively. These probabilities are bounded in two steps
in practice. In the first step, the probability Pð�1� 1j00Þ
and Pð�1 ∓ 1Þj00Þ of having �1 for the outcomes of the
detection of mode A1 and A2 without displacement
(α ¼ β ¼ 0) are measured. They provide the following
upper bounds pð0; 0Þ ≤ Pðþ1þ 1j0; 0Þ, pð0; 1Þ ≤
Pðþ1 − 1j0; 0Þ, pð1; 0Þ ≤ Pð−1þ 1j0; 0Þ and pð1; 1Þ ≤
Pð−1 − 1j0; 0Þ. Second, two detectors after a 50=50 beam
splitter are used to measure the probability to get a twofold
coincidence PcðA1=2Þ after the beam splitter for both mode
A1 and A2. These coincidence probabilities provide the
upper bounds on the missing elements, that is, pð2; 1Þ ≤
pðnA1

≥ 2Þ ≤ 2PcðA1Þ and pð1; 2Þ ≤ pðnA2
≥ 2Þ ≤

2PcðA2Þ. This results in a bound S⋆ðα; βÞ whose value
depends on the local displacement amplitudes α and β.
Finally, the mean value Qðα; βÞ of Mðα; βÞ is measured by
evaluating Pðþ1þ 1jα; βÞ, Pðþ1jαÞ and Pðþ1jβÞ, that is

Qðα; βÞ ¼ 1 − 2Pðþ1jαÞ − 2Pðþ1jβÞ þ 4Pðþ1þ 1jα; βÞ:
ð7Þ

If there is a value for the couple α, β such that Qðα; βÞ−
S⋆ðα; βÞ > 0, we deduce that the photonic modes A1 and A2

are entangled. Since the state describing A2 is obtained
from a local operation on the phononic state, Qðα; βÞ −
S⋆ðα; βÞ > 0 also certifies photon-phonon entanglement.
See Table I for a clarification of the quantities involved.
Results.—We focus on the statistics that would be

collected in modes A1 and A2 if the upper sideband is
laser driven during the time interval T1 and the lower
sideband is subsequently driven for a duration T2. The
value Q − S⋆ that would be obtained in this case when
optimizing the arguments of local displacements α, β and
the amount of initial squeezing ḡþT1 is shown in Fig. 2 as a
function of the phonon-photon conversion efficiency T ¼
1 − e−2ḡ−T2 for various overall detection efficiency η; see

Ref. [26], Sec. D for more details. Figure 2 shows a very
favorable robustness of our witness to inefficiencies. We
stress that the efficiency η represents the global detection
efficiency, including all the loss from the cavity optome-
chanical system to the detector (except the phonon-photon
conversion efficiency for mode A2 specified by T). We here
assumed that the mechanical system is prepared in its
ground state. In the more realistic case where the initial
mechanical cooling leads to a mechanical thermal state with
nonzero mean occupation number n0, the results presented
in Fig. 2 for η ¼ 0.3, for example, are essentially
unchanged as long as n0 ≤ 0.1 and substantial differences
between Q and S⋆ can still be observed for n0 ∼ 1; see
Ref. [26], Sec. D. Note that in case where the marginal
probabilities pðnA1

≥ 2Þ and pðnA2
≥ 2Þ are negligible, the

observed quantum correlations are ultimately limited by
single phonon coherence time, which could be upper
bounded by recording Q − S⋆ for various delays between
the pulses resonant with the upper and lower sidebands.
Feasibility study.—To illustrate the feasibility, we focus

on a photonic crystal nanobeam resonator [11,38,39] which
distinguishes itself by a high mechanical frequency
Ωm=2π ¼ 5.25 GHz [14]. Together with the cavity decay
rate κ=2π ¼ 846 MHz [14] and the optomechanical cou-
pling rate g0=2π ¼ 869 kHz [14], this resonator is placed in
the deep resolved sideband and weak coupling regimes. To
control the initial number of excitations, we consider the
use of a dilution refrigerator, which can bring the mean
phonon number down to n0 ∼ 0.2. Furthermore, to prevent
decoherence of the phonon state we also consider pulse
durations much smaller than the typical decoherence time
of the oscillator, which is of the order of 10 μs [38,40].
Considering a global detection efficiency η ¼ 10%, an
initial mean phonon number of n0 ¼ 0.2 and state-swap

FIG. 2. Difference Q − S⋆ between the mean value of our
witness observable Mðα; βÞ that would be observed between the
optical modes A1 and A2 and the maximum value that would be
obtained with a separable state as a function of the phonon-
photon conversion efficiency T ¼ 1 − e−2ḡ−T2 for various overall
detection efficiencies η, optimized over displacement choices α, β
and the amount of initial squeezing ḡþT1 which is kept small.
Q − S⋆ > 0 witnesses entanglement.
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efficiency of T ¼ 30% which can be realized using a pulse
laser resonant with the red sideband with a duration of T2 ¼
50 ns and intracavity photon number n− ≈ 318, we expect
to conclude about the presence of entanglement (violation
of the inequality Q − S⋆ ≤ 0 by 3 standard deviations)
within 750 000 experimental runs, see Ref. [26], Sec. E.
This involves the creation of a phonon-photon state using a
blue-detuned pulse of duration T1 ¼ 50 ns and nþ ≈ 298,
and the choice of displacement amplitudes α ¼ −β ¼ 2.63.
Given the experiments reported in Refs. [14,15], we
conclude that our scheme appears feasible with currently
available technologies.
Conclusion.—We have presented a witness tailored for

the detection of optomechanical entanglement using pho-
ton countings. Our proposal is based on the measurement of
single and twofold coincidence counts. It requires basic
phase stabilizations and is robust to loss, see Ref. [26],
Sec. F. This makes us confident that it can be used in
present day experiments with photonic crystal nanobeam
resonators to show directly optomechanical entanglement.
Following Ref. [7], it also applies straightforwardly to
electromechanical systems where it could be used to
demonstrate electromechanical entanglement with non-
Gaussian resources. Beyond opto- and electromechanics,
our witness could find applications in nanophotonics to
measure the coherence time of single phonons in any
Raman-active vibrational modes using two-color pump-
probe Raman scattering measurements [41]. It could also
be used to detect atom-photon entanglement directly in
spontaneous Raman protocols, e.g., to certify the proper
functioning of photon pair sources relevant for long-
distance quantum communications [42,43].
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