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José P. D’Incao,1,2 Jia Wang,3 and V. E. Colussi1,2,4
1JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440, USA

2Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
3Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia

4Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands

(Received 16 April 2018; published 9 July 2018)

We study the impact of three-body physics in quenched unitary Bose gases, focusing on the role of the
Efimov effect. Using a local density model, we solve the three-body problem and determine three-body
decay rates at unitarity, finding density-dependent, log-periodic Efimov oscillations, violating the expected
continuous scale invariance in the system. We find that the breakdown of continuous scale invariance, due
to Efimov physics, manifests also in the earliest stages of evolution after the interaction quench to unitarity,
where we find the growth of a substantial population of Efimov states for densities in which the interparticle
distance is comparable to the size of an Efimov state. This agrees with the early-time dynamical growth of
three-body correlations at unitarity [Colussi et al., Phys. Rev. Lett. 120, 100401 (2018)]. By varying the
sweep rate away from unitarity, we also find a departure from the usual Landau-Zener analysis for state
transfer when the system is allowed to evolve at unitarity and develop correlations.
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Over the past few years, the study of strongly interacting
Bose gases has greatly intensified due to the experimental
advances with ultracold atoms [1–10] unraveling universal
properties and other intriguing phenomena [11–32].
Although ultracold quantum gases have extremely low
densities, n, the unique ability to control the strength of the
interatomic interactions—characterized by the s-wave
scattering length, a—via Feshbach resonances [33] allows
one to probe the unitary regime (njaj3 ≫ 1), where the
probability for collisions can reach unity and the system
becomes nonperturbative. In contrast to their fermionic
counterparts [34–36], unitary Bose gases are susceptible to
fast atomic losses [37] that can prevent the system from
reaching equilibrium. In Ref. [3], a quench of the inter-
actions from weak to strong allowed for the study of the
dynamical evolution and equilibration of the unitary Bose
gas, thanks to the surprisingly slow three-body decay rates
[17]. By making the unitary regime accessible, this new
quenched scenario opened up intriguing ways to study
quantum few- and many-body nonequilibrium dynamics in
a controlled manner [38–43].
Our understanding of how correlations evolve and

subsequently equilibrate in quenched unitary Bose gases
is evolving as recent experiments probe physics in this
regime [1–6,8–10]. Most of the current theoretical
approaches, however, are based on the two-body physics
alone, leaving aside the three-body Efimov physics
[44–50]. In particular, at unitarity (jaj ¼ ∞), although
no weakly bound two-body state exists, an infinity of
Efimov states form. Critical aspects such as the three-body
loss rates and dynamical formation of Efimov state

populations remain unexplored within the nonequilibrium
scenario of quenched unitary Bose gases.
In this Letter, we explore various aspects related to the

three-body physics in quenched unitary Bose gases. We
solve the three-body problem using a simple local model,
incorporating density effects through a local harmonic trap
and describing qualitatively Efimov physics embedded in a
larger many-body system. Within this model, we determine
loss rates at unitarity that display density-dependent, log-
periodic oscillations due to Efimov physics. We also
analyze the dynamical formation of Efimov states when
the quenched system is held at unitarity and then swept
away to weak interactions. This scheme was recently
implemented for an ultracold gas of 85Rb atoms [8], where
a population of Efimov states in a gas phase was observed
for the first time. Our present study analyzes such dynami-
cal effects and demonstrates that for densities where the
interparticle distance is comparable to the size of an Efimov
state, their population is enhanced. This is consistent with a
recent theoretical study on the early-time dynamical growth
of three-body correlations [30], providing additional evi-
dence for the early-time violation of the universality
hypothesis for the quenched unitary Bose gases [11]. By
studying the dependence of the populations on the sweep
time, we find a departure from the usual Landau-Zener
model of the state formation as the system evolves at
unitarity and develops correlations.
Within the adiabatic hyperspherical representation

[51–54], the total three-body wave function for a given
state β is decomposed as
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ψβðR;ΩÞ ¼
X
ν

FβνðRÞΦνðR;ΩÞ; ð1Þ

where Ω collectively represents the set of all hyperangles,
describing the internal motion and overall rotations of the
system, and the hyperradius, R, gives the overall system
size. The channel functions Φν are eigenstates of the
hyperangular part of the Hamiltonian (including all inter-
atomic interactions) whose eigenvalues are the hyperspher-
ical potentials, obtained for fixed values of R. Bound and
scattering properties of the system are determined by
solving the three-body hyperradial Schrödinger equation,
�
−
ℏ2

2μ

d2

dR2
þWνðRÞ

�
FνðRÞþ

X
ν≠ν0

Wνν0 ðRÞFν0 ðRÞ¼EFνðRÞ;

ð2Þ
where μ ¼ m=

ffiffiffi
3

p
is the three-body reduced mass and ν is

an index that includes all quantum numbers necessary to
characterize each channel. The hyperradial motion is then
described by Eq. (2) and is governed by the effective three-
body potentialsWν and nonadiabatic couplingsWνν0 . In our
model, we assume atoms interact via a Lennard-Jones
potential, vðrÞ ¼ −C6=r6ð1 − λ6=r6Þ, where C6 is the dis-
persion coefficient [33], and λ is a parameter adjusted to
give the desired value of a, tuned such that only a single
s-wave dimer can exist [55]. The correct three-body
parameter [54,61,62], found in terms of the van der Waals
length rvdW ¼ ðmC6=ℏ2Þ1=4=2 [33], is naturally built into
this potential model, providing a more realistic description
of the problem.
In order to qualitatively incorporate density effects in our

calculations, we introduce a local harmonic confinement
whose properties are determined from the average atomic
density, hni [17,63–65]. This allows us to connect local few-
body properties to density-derived scales of the gas, includ-
ing the system’s energy, ϵn ¼ ℏ2ð6π2hniÞ2=3=2m, length
scales, k−1n ¼ℏ=ð2mϵnÞ1=2, and timescales, tn¼ℏ=ϵn. In the
hyperspherical representation, local harmonic confinement
is achieved by adding a hyperradial harmonic potential
[66,67],

VHOðRÞ ¼
μω2

HO

2
R2; ð3Þ

to the effective potentials Wν in Eq. (2). Here, ωHO ¼
ℏ=ma2HO is the trapping frequency and aHO is the oscillator
length.A priori, there is no uniqueway to relate the harmonic
confinement in our model to the atomic density. Never-
theless, as shown in Refs. [17,25,30,63–65], calibrating the
local trapping potential [Eq. (3)] to match the few-body
density with the interparticle spacing (∼hni−1=3) qualita-
tively describes the larger many-body system for timescales
shorter than tHO ¼ 1=ωHO. Here, we relate the local atomic
density, nlo, and local trapping potential by

nlo ¼
�
4π

3
hψ ijR3jψ ii

�
−1

∝
1

a3HO
; ð4Þ

where ψ i is the three-body wave function of the lowest trap
state in the regime of weak interactions. The results of this
Letter were obtained using ψ i relevant for the 85Rb experi-
ment [8], in which the prequench, initial state corresponds
to a ≈ 150a0.
In free space, and in the absence of a background gas, the

energies of Efimov states at unitarity, E3b, accumulate near
the free-atom threshold (E ¼ 0), and their corresponding
sizes, R3b, increase according to the characteristic log-
periodic geometric scaling [46]:

EðjÞ
3b ¼ −

ℏ2κ2�=m
ðeπ=s0Þ2j and RðjÞ

3b ¼ ð1þ s20Þ
1
2

ð3=2Þ12κ�
ðeπ=s0Þj; ð5Þ

where j ¼ 0; 1;…, labels each Efimov state according to its
excitation, κ� ≈ 0.226=rvdW is the three-body parameter
[54], and eπ=s0 ≈ 22.7 is Efimov’s geometric factor for
identical bosons. In the unitary Bose gas, however, one
expects that only Efimov states with binding energies larger
than ϵn and sizes smaller than k−1n are insensitive to the
background gas and can exist in their free-space form.
Otherwise, Efimov states should be sensitive to the back-
ground gas, represented here by a local trapping potential.
To illustrate this sensitivity within our model, the energy
levels, Eβ, of three identical bosons at jaj ¼ ∞ as a
function of nlo are shown in Fig. 1(a), displaying geometric
scaling as nlo is increased by a factor ðeπ=s0Þ3 ≈ 1.17 × 104.
Within our model, as the energy of a Efimov state
approaches ϵlon , its value is shifted away from its value
in free space [green dashed lines in Fig. 1(a)]. In order to
describe loss processes within our model, we have also
provided a finite width (lifetime) for the states, Γβ

(τβ ¼ ℏ=Γβ), adjusted to reproduce the known behavior
of the Efimov physics in 85Rb [68]—see the Supplemental
Material [55].
Besides the three-body eigenenergies, our model also

provides wave functions that determine various properties
of the quenched system. After quenching to the unitary
regime, the time evolution of the three-body system is
described by the projected three-body wave function,

ΨðR;Ω; tÞ ¼
X
β

cðuÞβ ψ ðuÞ
β ðR;ΩÞe−iðEβ−iΓβ=2Þt=ℏ; ð6Þ

which is a superposition of states at unitary, ψ ðuÞ
β , with

coefficients determined from their overlap with the initial

state, cðuÞβ ¼ hψ ðuÞ
β jψ ii. Within our local model, however,

the wave function in Eq. (6) can only be expected to
qualitatively represent the actual many-body system for
t < tn, since beyond this timescale, genuine many-body
effects should become important. Figure 1(b) shows the
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population at unitarity, jcβj2, for various states as a function
of nlo. We observe that the population of a given state
becomes substantial when its energy or size is in the
vicinity of the density-derived scales of the unitary Bose
gas (ϵn and k−1n , respectively).
The above results suggest that Efimov physics may

manifest in the density dependence of relevant observables,
since the atomic density sets the energy and length scales of
the gas. We first focus on the three-body decay rates, which
can be simply evaluated within our model from [17]

Γ�
3 ¼ −lim

t→0

_nðtÞ
nðtÞ ¼

X
β

jcðuÞβ ðnloÞj2
ΓβðnloÞ

ℏ
; ð7Þ

where nðtÞ ¼ nlojhΨðR;Ω; tÞjΨðR;Ω; tÞij. In a local den-
sity model, the decay rate in Eq. (7) is averaged over the
local density nlo. Using a Thomas-Fermi density profile,
our numerical calculations indicate that the averaged rate is
well approximated (within no more than 4%) by replacing
nlo with the corresponding average density hni in Eq. (7).
Our results for the three-body decay rate for the quenched
unitary Bose gas are shown in Fig. 2, covering a broad
range of densities. We find the expected hn2=3i scaling

[8,19,21], but also log-periodic oscillations that originate
from the increase of an Efimov state population whenever
its binding energy is comparable to ϵn (see Fig. 1). We fit
these oscillations as

Γ�
3 ≈ η

ℏ
m

�
Aþ Bsin2

�
s0 ln

hni1=3
r−1vdW

þ ϕ

��
hn2=3i; ð8Þ

where A ≈ 15.9, B ≈ 8.80, and ϕ ≈ 1.61—see the dashed
black curve in Fig. 2. Our numerical calculations, although
largely log-periodic, are slightly asymmetric. The results
shown in Fig. 2 have roughly 40% lower amplitude than the
experimental decay rate for 85Rb [8]; however, the oscil-
lation phase is consistent with preliminary experimental
observations [69]. While our results account for losses at
unitarity only, the experimental data were obtained after a
B-field sweep to weak interactions [8], thus allowing for
additional atom loss. Nevertheless, the existence of the log-
periodic oscillations in Fig. 2, with a substantial amplitude,
violates the universality hypothesis [11], in which all
observables related to the unitary Bose gas should scale
continuously as powers of n. Equation (8) depends only on
the system parameters rvdW and η for a particular atomic
species.
We now shift our focus to the dynamical formation of

weakly bound diatomic and Efimov states in quenched
unitary Bose gases. In fact, in the recent 85Rb experiment of
Ref. [8], a population of such few-body bound states was
obtained by quenching the system to unitary, evolving for a
time tdwell, and subsequently sweeping the system back to
weaker interactions (a ≈ 700a0) within a time tsw. There is
still, however, much to be understood about the dependence
of populations on the various parameters (n, tdwell, and tsw)
and the possible connections to the nonequilibrium dynam-
ics in the unitary regime. In order to address some of these
questions, we focus initially on the case tsw ≪ tn, where
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FIG. 1. (a) Energies, Eβ [in units of ϵlon ¼ ℏ2ð6π2nloÞ2=3=2m],
of three identical bosons at jaj ¼ ∞ as a function of the local
density, nlo. The dashed green lines represent the free-space
Efimov state energies. (b) The corresponding population of three-
body states, jcβj2, for quenching to unitarity. The shaded region
marks the range of densities where we have studied the dynamical
formation of Efimov states.
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FIG. 2. Three-body decay rate, Γ�
3, for

85Rb at jaj ¼ ∞ as a
function of the average density, hni. This figure displays the
hn2=3i scaling of the decay rate as well as the appearance of log-
periodic oscillations associated with Efimov physics. Resonances
at higher hni occur when the initial state is degenerate with one of
the possibly weakly coupled final states in our model. The dashed
black curve is the fitting function in Eq. (8).

PHYSICAL REVIEW LETTERS 121, 023401 (2018)

023401-3



ramping effects are minimized, and solve the time-depen-
dent three-body Schrödinger equation by following the
same experimental protocol of Ref. [8] described above—
see also Refs. [55,70]. Figure 3(a) shows the three-body
energy spectrum for a given density and for a range of a
relevant for the 85Rb experiment. For this particular density,
hni ≈ 9.9 × 1010 cm−3, only the ground [β ¼ 0, not shown
in Fig. 3(a)] and first excited Efimov states (β ¼ 1) have
sizes smaller than the average interatomic distance. The
black solid line in Fig. 3(a) is the energy of the (free-space)
diatomic state, −ℏ2=ma2, while the red curves following
along this threshold correspond to atom-diatom states, and
those following along the E ¼ 0 threshold correspond to
three-atom states. Figure 3(b) shows the population changes
during the sweep of the interactions (tsw ≈ 0.17tn) from
jaj ¼ ∞ to a ≈ 700a0, for a case in which the system is not
held in the unitary regime (tdwell ¼ 0). Whenever tdwell ¼ 0,
the population of few-body bound states develops entirely
during the interaction sweep. To quantify the population
dynamics, we define the fraction of formed two-body states,
f2b ¼ ð2=3ÞPβjcβj2, and Efimov states, f3b ¼

P
βjcβj2,

after the sweep [55]. For the parameters of Fig. 3(b), we find
that f2b and f3b are approximately 0.095 and 0.004,
respectively, with the remaining fraction of atoms unbound.
To explore how the time evolution of the system at

unitarity impacts the formation of two- and three-body
bound states, we study their dependence on tdwell over a
range of atomic densities [see shaded region in Fig. 1(b)].
Figure 3(c) shows this dependence for a relatively
low density where, although f2b grows fast and reaches

appreciable values, f3b still remains negligible for all tdwell.
A larger population of Efimov states, however, is observed
for higher densities [see Figs. 3(d) and 3(e), and Ref. [55].]
In general, we find that for short times, f2b ∝ tdwell and
f3b ∝ t2dwell, consistent with the early-time growth of two-
and three-body correlations found in Ref. [30]. Also, in
Ref. [30], it was observed that at early times the largest
enhancement of three-body correlations occurred at den-
sities where the average interatomic distance is comparable
to the size of an Efimov state. More precisely, this occurred
when knR3b ¼ 0.74ð5Þ, associated with a characteristic
density value

hn�ji ≈ 0.41
ð3=2Þ1=2

4π2ð1þ s20Þ3=2
κ3�

ðeπ=s0Þ3j : ð9Þ

For the range of densities explored in the 85Rb experi-
ment [8], the relevant characteristic density is hn�1i≈
5.2 × 1010 cm−3. In fact, Figs. 3(c)–3(e) display a marked
change in the dynamics of f3b as hn�1i is approached from
below and then exceeded. In Figs. 3(c)–3(e) we also display
the corresponding values for knR3b. For densities beyond
hn�1i (see also Ref. [55]), the population of Efimov states is
clearly enhanced and can be attributed to the growth of few-
body correlations [30]. Within our model, such enhance-
ment is also consistent with the increase of population of
the first excited Efimov state at unitarity [see Fig. 1(b)].
Correlation growth can also be further studied by

investigating the dependence of the populations on tsw,
shown in Fig. 4 for two densities and for tdwell ¼ 0 and
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FIG. 3. (a) Three-body energy spectrum for hni ≈ 9.9 × 1010 cm−3 within a range of a relevant for the 85Rb experiment. The black
solid line corresponds to the energy of the (free-space) diatomic state (ℏ2=ma2). (b) Corresponding change of population during the field
sweep (tsw ≈ 0.17tn) obtained immediately after the quench (tdwell ¼ 0). (c)–(e) Population fraction of diatomic and Efimov states
formed as a function of tdwell illustrating the enhancement of Efimov state formation as the density approaches the characteristic value
hn�1i ≈ 5.2 × 1010 cm−3 [Eq. (9)] or, equivalently, when knR3b ≈ 0.78ð2Þ [30].
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0.5tn. For tdwell ¼ 0 [Figs. 4(a) and 4(c)], i.e., in the
absence of time evolution at unitarity and the correspond-
ing growth of correlations, the dependence of the popula-
tions on tsw is well described by the Landau-Zener result:
f ¼ fmð1 − e−tsw=tmÞ, where fm is the final population and
tm the timescale related to the strength of the couplings
between the states involved in the process [65,71]. These
findings are drastically changed as the system is allowed to
evolve at unitarity, coinciding with the growth of few-body
correlations [30]. In that case, as shown in Figs. 4(b)
and 4(d), the population dynamics departs from the
Landau-Zener results. For tdwell ≠ 0, there is a clear
enhancement of f3b—even at tsw ¼ 0—which, in some
cases [Fig. 4(d) and Ref. [55]], can lead to a population of
Efimov states exceeding that of diatomic states.
In summary, solving the three-body problem in a local

harmonic trap, designed to reflect density effects, we
highlight the importance of Efimov physics in quenched
unitary Bose gases. Within our model, the continuous
scaling invariance of unitary Bose gases is violated in
relevant three-body observables. In the three-body decay
rates, this violation manifests through the appearance of
log-periodic oscillations characteristic of the Efimov effect.
In the early-time population growth of Efimov states after
the system is swept away from unitarity, it manifests

through a marked change in dynamics as the density
exceeds a characteristic value corresponding to a length
scale matching that of the Efimov state size and inter-
particle spacing. Furthermore, our study characterizes the
growth of correlations at unitarity through the early-time
dynamics of the population of diatomic and Efimov states.
This is shown to be qualitatively consistent with the early-
time growth of two- and three-body correlations at unitarity
observed in Ref. [30]. Moreover, we find that the departure
from the Landau-Zener results for the populations in the
nonequilibrium regime can also be associated with the
increase of correlations in the system. An experimental
study of the predictions of our model is within the range of
current quenched unitary Bose gas experiments.

The authors thank E. A. Cornell, C. E. Klauss, J. L.
Bohn, J. P. Corson, D. Blume, and S. Kokkelmans for
extensive and fruitful discussions. J. P. D. acknowledges
support from the U.S. National Science Foundation (NSF)
under Grant No. PHY-1607204, and from the National
Aeronautics and Space Administration (NASA). V. E. C.
acknowledges support from the NSF under Grant No. PHY-
1734006 and by the Netherlands Organization for
Scientific Research (NWO) under Grant No. 680-47-
623. J. W. acknowledges support under the Australian
Research Council's Future Fellowships funding scheme
(Project No. FT140100003) and Discovery Projects fund-
ing scheme (Project No. DP170104008).

[1] R. J. Fletcher, A. L. Gaunt, N. Navon, R. P. Smith, and Z.
Hadzibabic, Phys. Rev. Lett. 111, 125303 (2013).

[2] B. S. Rem, A. T. Grier, I. Ferrier-Barbut, U. Eismann, T.
Langen, N. Navon, L. Khaykovich, F. Werner, D. S. Petrov,
F. Chevy, and C. Salomon, Phys. Rev. Lett. 110, 163202
(2013).

[3] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell,
and J. D. S., Nat. Phys. 10, 116 (2014).

[4] U. Eismann, L. Khaykovich, S. Laurent, I. Ferrier-Barbut,
B. S. Rem, A. T. Grier, M. Delehaye, F. Chevy, C. Salomon,
L.-C. Ha, and C. Chin, Phys. Rev. X 6, 021025 (2016).

[5] F. Chevy and C. Salomon, J. Phys. B 49, 192001 (2016).
[6] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith,

M.W. Zwierlein, and Z. Hadzibabic, Science 355, 377
(2017).

[7] S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy,
and C. Salomon, Phys. Rev. Lett. 118, 103403 (2017).

[8] C. E. Klauss, X. Xie, C. Lopez-Abadia, J. P. D’Incao, Z.
Hadzibabic, D. S. Jin, and E. A. Cornell, Phys. Rev. Lett.
119, 143401 (2017).

[9] C. Eigen, J. A. P. Glidden, R. Lopes, N. Navon, Z.
Hadzibabic, and R. P. Smith, Phys. Rev. Lett. 119,
250404 (2017).

[10] R. J. Fletcher, J. Man, R. Lopes, P. Christodoulou, J.
Schmitt, M. Sohmen, N. Navon, R. P. Smith, and Z.
Hadzibabic, arXiv:1803.06338.

[11] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).

 0

0.1

0.2

0.3

0.4

0.5

 0

0.1

0.2

0.3

0.4

0.5

 0  0.1  0.2  0.3  0.4  0.5 0  0.1  0.2  0.3  0.4  0.5

(a)

(c) (d)

(b)

FIG. 4. Dependence of f2b and f3b on tsw for (a), (b)
[hni ≈ 9.9 × 1010 cm−3] and (c),(d) [9.7 × 1011 cm−3]. For
tdwell ¼ 0, the dependence on tsw is well described by the
Landau-Zener results (see text), while for tdwell ¼ 0.5tn [(b)
and (d)], the growth of correlations leads to the enhancement
of the trimer population and a departure from the Landau-Zener
results.

PHYSICAL REVIEW LETTERS 121, 023401 (2018)

023401-5

https://doi.org/10.1103/PhysRevLett.111.125303
https://doi.org/10.1103/PhysRevLett.110.163202
https://doi.org/10.1103/PhysRevLett.110.163202
https://doi.org/10.1038/nphys2850
https://doi.org/10.1103/PhysRevX.6.021025
https://doi.org/10.1088/0953-4075/49/19/192001
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1103/PhysRevLett.118.103403
https://doi.org/10.1103/PhysRevLett.119.143401
https://doi.org/10.1103/PhysRevLett.119.143401
https://doi.org/10.1103/PhysRevLett.119.250404
https://doi.org/10.1103/PhysRevLett.119.250404
http://arXiv.org/abs/1803.06338
https://doi.org/10.1103/PhysRevLett.92.090402


[12] J. M. Diederix, T. C. F. van Heijst, and H. T. C. Stoof, Phys.
Rev. A 84, 033618 (2011).

[13] W. Li and T.-L. Ho, Phys. Rev. Lett. 108, 195301 (2012).
[14] S.-J. Jiang, W.-M. Liu, G.W. Semenoff, and F. Zhou, Phys.

Rev. A 89, 033614 (2014).
[15] S. Laurent, X. Leyronas, and F. Chevy, Phys. Rev. Lett. 113,

220601 (2014).
[16] X. Yin and L. Radzihovsky, Phys. Rev. A 88, 063611

(2013).
[17] A. G. Sykes, J. P. Corson, J. P. D’Incao, A. P. Koller, C. H.

Greene, A. M. Rey, K. R. A. Hazzard, and J. L. Bohn, Phys.
Rev. A 89, 021601 (2014).

[18] M. Rossi, L. Salasnich, F. Ancilotto, and F. Toigo, Phys.
Rev. A 89, 041602 (2014).

[19] D. H. Smith, E. Braaten, D. Kang, and L. Platter, Phys. Rev.
Lett. 112, 110402 (2014).

[20] E. Braaten, D. Kang, and L. Platter, Phys. Rev. Lett. 106,
153005 (2011).

[21] F. Werner and Y. Castin, Phys. Rev. A 86, 053633 (2012).
[22] S. Piatecki and W. Krauth, Nat. Commun. 5, 3503 (2014).
[23] M. Kira, Nat. Commun. 6, 6624 (2015).
[24] M. Barth and J. Hofmann, Phys. Rev. A 92, 062716 (2015).
[25] J. P. Corson and J. L. Bohn, Phys. Rev. A 91, 013616

(2015).
[26] T. Comparin and W. Krauth, Phys. Rev. Lett. 117, 225301

(2016).
[27] X. Yin and L. Radzihovsky, Phys. Rev. A 93, 033653

(2016).
[28] S.-J. Jiang, J. Maki, and F. Zhou, Phys. Rev. A 93, 043605

(2016).
[29] Y. Ding and C. H. Greene, Phys. Rev. A 95, 053602 (2017).
[30] V. E. Colussi, J. P. Corson, and J. P. D’Incao, Phys. Rev.

Lett. 120, 100401 (2018).
[31] M.W. C. Sze, A. G. Sykes, D. Blume, and J. L. Bohn, Phys.

Rev. A 97, 033608 (2018).
[32] D. Blume, M.W. C. Sze, and J. L. Bohn, Phys. Rev. A 97,

033621 (2018).
[33] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[34] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008).
[35] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and

R. Walser, Phys. Rev. Lett. 87, 120406 (2001).
[36] S. J. J. M. F. Kokkelmans, J. N. Milstein, M. L. Chiofalo, R.

Walser, and M. J. Holland, Phys. Rev. A 65, 053617 (2002).
[37] J. P. D’Incao, H. Suno, and B. D. Esry, Phys. Rev. Lett. 93,

123201 (2004).
[38] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[39] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)

452, 854 (2008).
[40] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[41] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,

M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Science 337, 1318 (2012).

[42] M. A. Cazalilla, A. Iucci, and M.-C. Chung, Phys. Rev. E
85, 011133 (2012).

[43] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,
105701 (2005).

[44] V. Efimov, Sov. J. Nucl. Phys. 29, 546 (1979).
[45] V. Efimov, Nucl. Phys. A210, 157 (1973).
[46] E. Braaten and H.W. Hammer, Phys. Rep. 428, 259 (2006).
[47] Y. Wang, J. P. D’Incao, and B. D. Esry, Adv. At. Mol. Opt.

Phys. 62, 1 (2013).
[48] P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017).
[49] J. P. D’Incao, J. Phys. B 51, 043001 (2018).
[50] C. H. Greene, P. Giannakeas, and J. Pérez-Ríos, Rev. Mod.
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