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The Kardar-Parisi-Zhang (KPZ) equation defines the main universality class for nonlinear growth and
roughening of surfaces. But under certain conditions, a conserved KPZ equation (CKPZ) is thought to set
the universality class instead. This has non-mean-field behavior only in spatial dimension d < 2. We point
out here that CKPZ is incomplete: It omits a symmetry-allowed nonlinear gradient term of the same order
as the one retained. Adding this term, we find a parameter regime where the one-loop renormalization
group flow diverges. This suggests a phase transition to a new growth phase, possibly ruled by a strong-
coupling fixed point and thus described by a new universality class, for any d > 1. In this phase, numerical
integration of the model in d ¼ 2 gives clear evidence of non-mean-field behavior.
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Kinetic roughening phenomena arise when an interface
is set into motion in the presence of fluctuations. The
earliest theoretical investigations [1–3] were concerned
with the Eden model [4], originally proposed to describe
the shape of cell colonies, and with the ballistic deposition
model [5]. Kardar, Parisi, and Zhang (KPZ) [6] discovered
an important universality class for growing rough inter-
faces, by adding the lowest-order nonlinearity to the
continuum Edwards-Wilkinson (EW) model, in which
height fluctuations are driven by nonconserved noise and
relax diffusively [7]. The KPZ equation inspired many
analytic, numerical, and experimental studies [8–10] and
continues to surprise researchers [9,11–15], not least of all
because of a strong-coupling fixed point not accessible
perturbatively [6]. Several experiments have been per-
formed [16] to confirm the KPZ universality class and
recently gained sufficient statistics to show universal
properties beyond scaling laws [17–19]. Finally, how to
define solutions of stochastic nonlinear partial differential
equations is a well-studied mathematical problem [20,21];
interestingly, recent progress made on the KPZ equation
[22] uses a construction related to the renormalization
group (RG) [23].
Despite its fame, the KPZ equation does not describe all

isotropically roughening surfaces; various other universality
classes have been identified [8,24]. In particular, it is agreed
that, in some cases such as vapor deposition and idealized
molecular beam epitaxy [25], surface roughening should be
described by conservative dynamics (rearrangements domi-
nate any incoming flux), with no leading-order correlation
between the hopping direction and the local slope. These
considerations eliminate the EW linear diffusive flux and

make the geometric nonlinearity addressed by KPZ not
allowed [8].What remains is a conserved version of the KPZ
equation (CKPZ) [26–28],which has beenwidely studied for
nearly three decades [8,29–32]:

_ϕ ¼ −∇ · Jλ þ η; Jλ ¼ ∇fκ∇2ϕþ λj∇ϕj2g: ð1Þ

Here ϕðr; tÞ is the height of the surface above point r
in a d-dimensional plane, Jλ is the deterministic current, and
η is a Gaussian conservative noise with variance
hηðr; tÞηðr0; t0Þi ¼ −2D∇2δdðr − r0Þδðt − t0Þ. In the linear
limit, λ ¼ 0, Eq. (1) reduces to the Mullins equation for
curvature driven growth (a conserved counterpart of EW)
[33] whose large-scale behavior is controlled by two expo-
nents, χ ¼ ð2 − dÞ=2 and z ¼ 4, with spatial and temporal
correlators obeying hϕðr; tÞϕðr0; tÞi ∼ jr − r0j2χ and
hϕðr; tÞϕðr; t0Þi ∼ jt − t0j2χ=z. The nonlinear term λj∇ϕj2
can be interpreted microscopically as a nonequilibrium
correction to the chemical potential, causing jump rates to
depend on the local steepness at the point of take-off as well
as on the curvature [8].
The properties of the CKPZ universality class are well

known [8]: The upper critical dimension is 2, above which
the RG flow leads to the Gaussian fixed point of the
Mullins equation, where χ < 0 implies smooth growth.
Only for d < 2 is the nonlinearity relevant; a nontrivial
fixed point then emerges perturbatively [see Fig. 3(a)]. The
one-loop RG calculation [26,30] shows that, at leading
order in ϵ ¼ 2 − d, the critical exponents are z ¼ 4 − ϵ=3
and χ ¼ ϵ=3; the surface is now rough (χ > 0). Such
predictions turn out to be very accurate when tested against
numerical integration of CKPZ [8].
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In this Letter, we argue that CKPZ is not the most general
description of conservative roughening without leading-
order slope bias and that a potentially important univer-
sality class may have been overlooked by assuming so. We
show this by establishing the importance in d > 1 of a
second, geometrically motivated nonlinear term, also of
leading order, whose presence fundamentally changes the
structure of the one-loop RG flow, creating a separatrix
beyond which the flow runs away to infinity. This might
lead to three conclusions: (i) The runaway is an unphysical
feature of the one-loop RG flow, cured at higher orders;
(ii) the separatrix in the RG flow marks a phase transition
towards a new phase, where scale invariance is lost;
(iii) scale invariance is present in this new phase, but its
properties are dictated by a strong-coupling fixed point.
Observe that (iii) closely resembles what is found for KPZ,
whose strong-coupling regime is long established. We
finally perform numerical simulations in the most physi-
cally relevant case of d ¼ 2 and show evidence that the
separatrix is not just an artifact of the one-loop RG flow.
For nonconserved dynamics, the KPZ nonlinearity

stands alone at leading order after imposing all applicable
symmetries. For conserved dynamics, however, the CKPZ
choice Jλ of the deterministic current in (1) is not the only
one possible. All symmetries consistent with Jλ also admit,
at the same order (∇3, ϕ2), a second term:

Jζ ¼ −ζð∇2ϕÞ∇ϕ: ð2Þ

Like any vector field, Jζ can be written via Helmholtz
decomposition as the sum of a rotational part Jr and an
irrotational part Jirr. The rotational part has no effect on _ϕ.
Although Jirr can always be written as the gradient of a
scalar function, this function need not be a local function of
ϕ and its gradients, even though Jζ ¼ Jr þ Jirr is local in
that sense. This expresses the fact that Helmholtz decom-
position of a vector field does not commute with its
gradient expansion.
The ζ term can be explained by considering more

carefully the “blind jumping” dynamics often used to
motivate CKPZ [8]. Specifically, we suppose jumping
particles to move a small fixed geodesic distance along
the surface in a random direction. To visualize the resulting
physics, consider curving a flat sheet of paper into a
sinusoidally corrugated surface a cos kx and then applying
a shear deformation in the ðy;ϕÞ plane to give ϕðx; yÞ ¼
a cos kxþ by. This resembles a sloping roof with alternat-
ing ridges and grooves (Fig. 1). The locus of points of
constant geodesic distance from some departure point (with
y ¼ y0) is as shown in Fig. 1(b). We now ask the fraction f
of landing sites (i.e., of points on the folded circle) that have
y > y0. It can be confirmed that f > 1=2 for a point on a
ridge (ϕxx < 0), but f < 1=2 for a point in a groove
(ϕxx > 0). The resulting bias towards a positive or negative
y increment is bilinear in tilt and curvature, vanishing by

symmetry when either k or b is zero. It follows that the local
deterministic flux in the y direction contains a term ∼ϕxxϕy

which is not captured by λ but demands the existence
of the ζ term. This argument generalizes directly to any
case where the “landing rate” depends on the geodesic
distance only.
We have thus confirmed that the ζ term is physical,

although of course our “blind geodesic jumping” is not the
only possible choice of dynamics. With this choice, the ζ
nonlinearity is purely geometric, arising from the trans-
formation from normal to vertical coordinates. Yet the same
is true for the KPZ nonlinearity [6,8].
In summary, for d > 1, CKPZ is an incomplete model.

Its generalization, which we call CKPZ+, reads

_ϕ ¼ −∇2fκ∇2ϕþ λj∇ϕj2g −∇ · Jζ þ η: ð3Þ

We have seen no previous work on (3) in the literature,
except for one study corresponding to a specific combi-
nation of the λ and ζ terms [34]. Related models, but
containing nonconserved noise and the Edward-Wilkinson
diffusive term, have been also considered in Refs. [35,36].
A standard dimensional analysis [37] shows both λ and ζ to
be perturbatively irrelevant for d > 2, but this does not
preclude important differences in critical behavior between
CKPZ and CKPZþ in d > 1. We now present strong
evidence for this outcome, first by analyzing the RG flow
perturbatively close to the Gaussian fixed point, where
we may hold κ, D constant [37], so the RG flow is derived
in terms of the reduced couplings λ̄2 ¼ λ2D=κ3 and
ζ̄2 ¼ ζ2D=κ3. Transforming (3) into Fourier space with
wave vector q and frequency ω, we have

ϕðq̂Þ¼ϕ0ðq̂Þþ
G0ðq;ωÞ

2

Z
q̂0
gðq;q0Þϕðq̂0Þϕðq̂− q̂0Þ; ð4Þ

FIG. 1. (a) Contour plot of the surface ϕðx; yÞ ¼ 2 cos xþ y
and the current Jζ ¼ −ζð∇2ϕÞ∇ϕ (vectors). Jζ resembles a shear
flow and thus has nonzero curl. In (b), the blue line is the locus of
points C on the surface equidistant from the origin in the natural
metric of the surface. The red dotted line is the intersection
between the vertical plane y ¼ 0 and the surface: Because it does
not cut C in half, it induces Jζ ≠ 0 if a particle in (0,0) jumps with
equal probability to any site on C.
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where q̂¼ðω;qÞ, ϕ0ðq̂Þ¼G0ðq;ωÞηðq̂Þ=q2, the bare pro-
pagator is G0ðq;ωÞ¼q2=ð−iωþκq4Þ, and η is Gaussian
noise with hηðq̂Þηðq̂0Þi ¼ 2Dq2ð2πÞdþ1δdþ1ðq̂þ q̂0Þ.
In Eq. (4), the nonlinearities λ and ζ enter via a function

gðq;q0Þ that, on symmetrizing q0 ↔ ðq − q0Þ, reads

gðq;q0Þ ¼ −2λq0 · ðq − q0Þ

þ ζ

�
q02q · ðq − q0Þ

q2
þ jq − q0j2q · q0

q2

�
: ð5Þ

We denote the two-point correlation function of the Mullins
equation by C0ðq̂; q̂0Þ ¼ ð2πÞdþ1C0ðq;ωÞδdþ1ðq̂þ q̂0Þ,
where C0ðq;ωÞ ¼ 2DG0ðq;ωÞG0ð−q;−ωÞ=q2.
It is useful to introduce diagrammatic notation, where a

line denotes a zeroth-order field ϕ0 and the correlation
function C0ðq;ωÞ is represented as a circle between
two incoming lines. The vertex reads ½G0ðq;ωÞ=2�×R
q̂0 gðq;q0Þϕðq̂0Þϕðq̂ − q̂0Þ, with q̂ the wave vector entering
into the vertex. At one loop, all four diagrams shown in
Fig. 2 might contribute, but a number of simplifications
occur. First consider the diagram in Fig. 2(d), which could
renormalizeD. Taylor expanding, one finds that the leading
contribution is Oðq4Þ, rendering this irrelevant for small ϵ
and close to the Gaussian fixed point. Next, the two
triangular diagrams in Figs. 2(b) and 2(c) might renorm-
alize the couplings λ and ζ, but explicit computations [38]
show that their contributions exactly cancel out. This can
also be shown more directly, by generalizing the argument
of Ref. [30]. We note that, whileD remains unrenormalized
at any order in the perturbation theory, λ and ζ do get
renormalized at a higher order. Indeed, this is already
known to happen in CKPZ [30].
We conclude that the diagram in Fig. 2(a) is the only

nonvanishing one to one loop. Its contributions at the order
of q0 and q vanish [38], giving a leading-order correction
Oðq2Þ, which renormalizes κ. Higher terms are irrelevant
for small ϵ and close to the Gaussian fixed point, so
we neglect them. The shifted value of κ is derived in
Ref. [38] as

κI ¼ κ

�
1 −Mðλ̄; ζ̄; dÞ Sd

ð2πÞd
Z

Λ

Λ=b
xd−s3dx

�
; ð6Þ

where Sd ¼ 2πd=2=Γðd=2Þ, ðΛ=b;ΛÞ for b > 1 is the
momentum shell integrated out, and

Mðλ̄; ζ̄; dÞ ¼ 1

2dð2þ dÞ ½ð2d
2 − 3d − 2Þζ̄2

þ4dðdþ 2Þλ̄ ζ̄−4ðdþ 2Þλ̄2�: ð7Þ

Since the integrating does not produce new relevant
couplings at one loop, we are justified in excluding all
higher terms from (4) and indeed from the CKPZ+
equation (3).
The last step to obtain the RG flow is rescaling back to

the original cutoff Λ and reabsorbing all rescalings into the
couplings. To do so, one must introduce scaling exponents
for time and the field, such that when q is rescaled as
q → bq, then ω → bzω and ϕ → b−χϕ. The critical expo-
nents z and χ are fixed by imposing stationarity of the RG
flow at its fixed points. This gives the transformation
between original and rescaled couplings.
Taking the infinitesimal limit b ¼ 1þ db, we find the

RG flow as

dκ
db

¼ κ

�
z − 4 −Mðλ̄; ζ̄; dÞ Sd

ð2πÞd
�
; ð8Þ

dD
db

¼ Dðz − 2 − d − 2χÞ; ð9Þ

dðλ; ζÞ
db

¼ ðλ; ζÞðzþ χ − 4Þ: ð10Þ

Consistent with proximity to the Gaussian fixed point, we
impose dκ=db ¼ dD=db ¼ 0 and use (8)–(10) to obtain

dðλ̄; ζ̄Þ
db

¼ ðλ̄; ζ̄Þ
�
2 − d
2

þ 3

2
Mðλ̄; ζ̄; dÞ Sd

ð2πÞd
�
: ð11Þ

This, the central technical result of this Letter, is the one-
loop RG flow of the CKPZ+ equation (3).
It is now straightforward to obtain the fixed points of the

RG flow and their critical exponents setting dκ=db ¼
dD=db ¼ 0 and using (8) and (9). First of all, we have
the Gaussian fixed point λ ¼ ζ ¼ 0, whose exponents z and
χ remain those of the Mullins equation mentioned above. In
the plane of reduced couplings ðλ̄; ζ̄Þ, we find additional
lines of fixed points on the conics defined by

SdMðλ̄; ζ̄; dÞ ¼ ð2πÞdðd − 2Þ=3: ð12Þ

Here the critical exponents are those of CKPZ: z ¼ 4 −
ðϵ=3Þ þOðϵ2Þ and χ ¼ ðϵ=3Þ þOðϵ2Þ. The stability of the
RG fixed points is shown Fig. 3. For d > 2, the Gaussian

FIG. 2. The diagrams present at one loop. Those in (b)–(d) do
not generate any relevant coupling for ϵ small and close to the
Gaussian fixed point.
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point is locally stable [Fig. 3(d)]. However, the two new
lines of fixed points are unstable, and the basin of attraction
of the Gaussian fixed point shrinks when approaching
d → 2þ. In d < 2, the Gaussian fixed point becomes
unstable, while the lines of fixed points defined by (12)
are stable [Figs. 3(a) and 3(b)]. Nonetheless, in 1 < d ≤ 2,
the latter are not globally attractive, because there are
sectors of the reduced couplings plane where the RG flow
runs away to infinity. These sectors exclude the pure CKPZ
case (ζ ¼ 0, vertical axis) so that the runaway is a specific
feature of CKPZþ. Similar remarks apply in d > 2, where
the unstable fixed lines are separatrices between the
Gaussian fixed point and a runaway to infinity.
The scenario just reported resembles that of KPZ at two

loops [37,39]. There, the Gaussian fixed point is stable for
d > 2 and unstable for d < 2. A nontrivial fixed point is
again present which is stable for d < 2 but unstable for
d > 2, where the Gaussian fixed point has a finite basin of
attraction, beyond which the flow runs away. In KPZ, this
scenario signifies the emergence of a nonperturbative,
strong-coupling fixed point [6,11,39], whose existence
and properties are by now well established. The two main
differences with respect to KPZ are (i) in KPZ, the coupling
constant at the non-Gaussian fixed point diverges in the
limit d → 2− [37], and (ii) in KPZ, for d < 2, the nontrivial
fixed point is fully attractive. Despite these differences, it is
natural to speculate that the runaway to infinity signifies the
presence of a strong-coupling fixed point, with a distinct
universality class, also for CKPZþ in d > 1. However, as
anticipated in the introduction, two other scenarios are
possible: The runaway to infinity might be just an artifact of

the one-loop computation, or the separatrix in the RG flow
could signal a phase transition to a different growth phase
without scale invariance.
In order to rule out that the runaway of the RG flow is an

artifact of the one-loop computation, we performed numeri-
cal simulations of (3) in d ¼ 2, the physically most relevant
case. We used a pseudospectral code with a 2=3 dealiasing
procedure and a Heun scheme [40] for the time integration.
In all simulations, we set D ¼ κ ¼ 1, and all the results
shown are obtained starting from a flat initial condition
ϕ ¼ 0, but we checked that no difference is obtained when
starting from a random initial condition. We checked the
stability of our results upon varying the time step in the
window ð10−4; 5 × 10−3Þ. The system sizes used are L × L,
with L varying between 15 and 45. As is standard in the
study of roughening surfaces, we report below results on
the width of the interface WðL; tÞ≡ ð1=L2Þ Rrhϕ2ðr; tÞi.
For fixed L, we studied the growth ofW with time t and the
large-time saturated width.
Within the basin of attraction of the Gaussian fixed point,

the code proved numerically stable, allowing us to repro-
duce the expected critical behavior [38]: Wðt; LÞ ∼ log t
and z ¼ 4. Moreover, simulations in d ¼ 1 gave exponents
agreeing with the known CKPZ values (not shown). In
contrast, for parameters where the RG flow diverges to
infinity, in order to obtain numerically stable results, we
had to add a higher-order regularizer in the form of k6∇6ϕ
in (3). This is irrelevant close to the Gaussian fixed point
and does not affect the RG flow there. In Fig. 4, we report
WðL; tÞ as a function of the time for different system sizes.
The behavior differs strongly from the mean-field one:
After an initial transient, shown in Ref. [38] to depend on
k6, W grows much faster than logarithmically. At large
enough system sizes, a seemingly size-independent

FIG. 4. Growth of the width of the interface WðL; tÞ with time
for different system sizes L of the CKPZþ equation in d ¼ 2. The
parameters 2λ ¼ ζ ¼ 1 were chosen to lie in the region where the
RG flow diverges. Each line is an average over several noise
realizations (from 1600 for L ¼ 15 to 80 for L ¼ 45). The value
of k6 ¼ 0.2. The difference between the present case and the one
where the RG flow converges towards the Gaussian fixed point is
apparent. Here, at late times (decreasing with k6 increasing [38]),
the width grows faster than logarithmically. The growth law
seems independent from the system size.

FIG. 3. One-loop RG flow of the (a) CKPZ model as a function
of space dimension d and of the CKPZþ model for
(b) 1 < d < 2, (c) d ¼ 2, and (d) d > 2. (CKPZ and CKPZþ
are the same model in d ¼ 1). The red lines are the fixed points of
the RG flow given by solutions of (12) and the dashed lines their
asymptotes; the origin is the Gaussian fixed point. In (b)–(d), the
RG flow is radial and its direction is given by the arrows in
the plots.
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algebraic growth law emerges, although larger L values
would be needed to confirm this. Figure 4 is obtained
by averaging over many noise realizations (from 1600 for
L ¼ 15 to 400 for L ¼ 45). We report in Ref. [38] the
behavior of W for a few individual ones, showing a strong
increase in the variance of W with time. This seems to be
associated with the late-stage algebraic growth regime.
Our simulations give clear evidence that the runaway to

infinity is not an artifact of the one-loop RG flow. For
parameters where the RG flow diverges, we observe the
formation of localized peaks which then undergo coarsen-
ing to give the late-time growth regime reported in Fig. 4
(see Supplemental Movie 1 [38]). This is reminiscent
of previous arguments suggesting (albeit for a different
growth equation) that the CKPZþ nonlinearities favor
mound formation [36]. Moreover, recent analyses of the
deterministic version of CKPZþ in 2D for a specific
combination of λ and ζ concluded that this allows blowup
solutions [35,41]. It remains an open question whether
these solutions persist with noise or are smoothed out,
perhaps forming a mound phase or other strong-coupling
universality class. It would be interesting to analyze the
surface statistics in this regime more quantitatively, as has
been done for related growth equations with nonconserved
noise [42]. More details on the non-Gaussian growth phase
are given in Ref. [38].
In summary, we have argued that the CKPZ equation (1),

thought to govern conserved, slope-unbiased roughening
dynamics, is incomplete. We introduced a new model,
CKPZþ (3), with a complete set of leading-order non-
linearities. In d ¼ 1, CKPZ and CKPZþ coincide, but
they differ in any d > 1. Surprisingly, the RG analysis of
CKPZþ at one loop suggests the presence of a non-mean-
field growth phase in any dimension d > 1, which might be
due to a new universality class or a loss of scale invariance.
Indeed, our numerical analysis clearly indicates that the
runaway of the one-loop RG flow signifies new physics at
strong coupling.
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[11] L. Canet, H. Chaté, B. Delamotte, and N. Wschebor,

Phys. Rev. Lett. 104, 150601 (2010).
[12] T. Sasamoto and H. Spohn, Phys. Rev. Lett. 104, 230602

(2010).
[13] T. Kriecherbauer and J. Krug, J. Phys. A 43, 403001 (2010).
[14] B. Derrida, J. Stat. Mech. Theor. Exp. 2007, P07023 (2007).
[15] B. Meerson, E. Katzav, and A. Vilenkin, Phys. Rev. Lett.

116, 070601 (2016).
[16] K. A. Takeuchi, J. Stat. Mech. Theor. Exp. 2014, P01006

(2014).
[17] K. A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn,

Sci. Rep. 1, 34 (2011).
[18] J.-i. Wakita, H. Itoh, T. Matsuyama, and M. Matsushita,

J. Phys. Soc. Jpn. 66, 67 (1997).
[19] J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N.

Provatas, M. J. Alava, and T. Ala-Nissila, Phys. Rev. Lett.
79, 1515 (1997).

[20] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite
Dimensions (Cambridge University Press, Cambridge,
England, 2014).

[21] L. Bertini, N. Cancrini, and G. Jona-Lasinio, Commun.
Math. Phys. 165, 211 (1994).

[22] M. Hairer, Ann. Math. 178, 559 (2013).
[23] A. Kupiainen and M. Marcozzi, J. Stat. Phys. 166, 876

(2017).
[24] A.-L. Barabási and H. E. Stanley, Fractal Concepts in

Surface Growth (Cambridge University Press, Cambridge,
England, 1995).

[25] J. Krim and G. Palasantzas, Int. J. Mod. Phys. B 09, 599
(1995).

[26] T. Sun, H. Guo, and M. Grant, Phys. Rev. A 40, 6763
(1989).

[27] D. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).
[28] S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325

(1991).
[29] M. Constantin, C. Dasgupta, P. Punyindu Chatraphorn,

S. N. Majumdar, and S. Das Sarma, Phys. Rev. E 69,
061608 (2004).

[30] H. K. Janssen, Phys. Rev. Lett. 78, 1082 (1997).
[31] Z. Rácz, M. Siegert, D. Liu, and M. Plischke, Phys. Rev. A

43, 5275 (1991).
[32] S. H. Yook, C. K. Lee, and Y. Kim, Phys. Rev. E 58, 5150

(1998).
[33] W.W. Mullins, in Structure, Energetics and Kinetics, edited

by N. A. Gjostein and W. D. Robertson (American Society
of Metals, Metals Park, OH, 1963).

[34] C. Escudero and E. Korutcheva, J. Phys. A 45, 125005
(2012).

PHYSICAL REVIEW LETTERS 121, 020601 (2018)

020601-5

https://doi.org/10.1007/BF01325205
https://doi.org/10.1103/PhysRevLett.53.415
https://doi.org/10.1088/0305-4470/18/12/026
https://doi.org/10.1088/0305-4470/18/2/005
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1080/00018739700101498
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1103/PhysRevLett.104.150601
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1088/1742-5468/2014/01/P01006
https://doi.org/10.1088/1742-5468/2014/01/P01006
https://doi.org/10.1038/srep00034
https://doi.org/10.1143/JPSJ.66.67
https://doi.org/10.1103/PhysRevLett.79.1515
https://doi.org/10.1103/PhysRevLett.79.1515
https://doi.org/10.1007/BF02099769
https://doi.org/10.1007/BF02099769
https://doi.org/10.4007/annals.2013.178.2.4
https://doi.org/10.1007/s10955-016-1636-3
https://doi.org/10.1007/s10955-016-1636-3
https://doi.org/10.1142/S0217979295000239
https://doi.org/10.1142/S0217979295000239
https://doi.org/10.1103/PhysRevA.40.6763
https://doi.org/10.1103/PhysRevA.40.6763
https://doi.org/10.1209/0295-5075/13/5/002
https://doi.org/10.1103/PhysRevLett.66.325
https://doi.org/10.1103/PhysRevLett.66.325
https://doi.org/10.1103/PhysRevE.69.061608
https://doi.org/10.1103/PhysRevE.69.061608
https://doi.org/10.1103/PhysRevLett.78.1082
https://doi.org/10.1103/PhysRevA.43.5275
https://doi.org/10.1103/PhysRevA.43.5275
https://doi.org/10.1103/PhysRevE.58.5150
https://doi.org/10.1103/PhysRevE.58.5150
https://doi.org/10.1088/1751-8113/45/12/125005
https://doi.org/10.1088/1751-8113/45/12/125005


[35] C. Escudero, Phys. Rev. Lett. 101, 196102 (2008).
[36] E. Sherman and G. Pruessner, arXiv:1204.3017.
[37] U. C. Täuber, Critical Dynamics (Cambridge University

Press, Cambridge, England, 2014).
[38] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.020601 for further
details.

[39] E. Frey and U. C. Täuber, Phys. Rev. E 50, 1024 (1994).
[40] R. Mannella, in Stochastic Processes in Physics, Chemistry,

and Biology (Springer, New York, 2000), pp. 353–364.
[41] C. Escudero, F. Gazzola, and I. Peral, J. Math. Pures Appl.

103, 924 (2015).
[42] B. Chakrabarti and C. Dasgupta, Phys. Rev. E 69, 011601

(2004).

PHYSICAL REVIEW LETTERS 121, 020601 (2018)

020601-6

https://doi.org/10.1103/PhysRevLett.101.196102
http://arXiv.org/abs/1204.3017
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.020601
https://doi.org/10.1103/PhysRevE.50.1024
https://doi.org/10.1016/j.matpur.2014.09.007
https://doi.org/10.1016/j.matpur.2014.09.007
https://doi.org/10.1103/PhysRevE.69.011601
https://doi.org/10.1103/PhysRevE.69.011601

