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We use numerically unbiased methods to show that the one-dimensional Hubbard model with
periodically distributed on-site interactions already contains the minimal ingredients to display the
phenomenon of magnetoresistance; i.e., by applying an external magnetic field, a dramatic enhancement on
the charge transport is achieved. We reach this conclusion based on the computation of the Drude weight
and of the single-particle density of states, applying twisted boundary condition averaging to reduce finite-
size effects. The known picture that describes the giant magnetoresistance, by interpreting the scattering
amplitudes of parallel or antiparallel polarized currents with local magnetizations, is obtained without
having to resort to different entities; itinerant and localized charges are indistinguishable.
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Introduction.—The phenomenon of giant magnetoresist-
ance highlights the speed in which some results in basic
research can be rapidly converted into technological
applications. It took less than a decade from its discovery
in the late 1980s [1,2] to its implementation on the read
heads of high-density hard disks commercialized for the
general public. Specifically, it describes the significant
reduction of electrical resistance of certain materials,
composed of sandwiches of thin magnetic and nonmagnetic
layers, in the presence of an external magnetic field. The
physical explanation of this purely quantum mechanical
effect relies on the fact that electrons traveling through a
ferromagnetic conductor will scatter differently depending
on the relative orientation of their spin to the magnetization
direction of the conductor—with those oriented parallel
scattering less often than those oriented antiparallel [3–5].
In a band picture, this is explained by the imbalance of

charge populations with spin parallel and antiparallel to an
external magnetic field, which translates into very different
local density of states in the magnetic regions for both spin
states at the Fermi energy [5]. For the antiparallel compo-
nent, the reduced density of states results in a higher
resistance for this channel, compared to a lower resistance
for the parallel one. A simplified model of resistances,
based on the scattering of each itinerant spin component by
the magnetization of the background, qualitatively explains
the increased conductivity in these materials since the
external field polarizes the magnetization of the ferromag-
netic layers, and it thus enhances the transport for electrons
that have spin parallel to it [3–6].
Interestingly, this has also been investigated within the

scope of ab initio electronic structure calculations, which
do not account, per se, for interactions between electrons
but are complemented by spin-dependent scattering using
quasiclassical methods [7,8]. Here, our approach is

different: We start from the simplest possible interacting
model describing electrons hopping on a lattice with
reduced dimensionality—essentially a one-dimensional
chain or a nanowire—and model magnetic and nonmag-
netic regions via site-dependent (although periodic) inter-
actions. By unbiasedly calculating the transport properties
of this simplified system, we show that it already contains
the necessary attributes to display effects similar to the
giant magnetoresistance (GMR) phenomenon in a purely
interacting setting, as schematically represented in the
sketch in Fig. 1. Besides, what is mostly considered a
phenomenon that arises from the interplay of two types of
electrons, localized and delocalized ones, here is obtained
via a single entity.
Model and methods.—We use the one-dimensional

Hubbard model with site-dependent interactions [9–14],
creating a superlattice of size L,

Ĥ ¼ −t
X
i;σ

ðĉ†i;σ ĉiþ1;σ þ H:c:Þ þ
X
i

Uin̂i;↑n̂i;↓

− h
X
i

ðn̂i;↑ − n̂i;↓Þ; ð1Þ

where ĉ†i;σ (ĉi;σ) creates (annihilates) a fermion with spin σ
(↑ or ↓) at the ith site of the lattice, and n̂i;σ ¼ ĉ†i;σ ĉi;σ. The
first term in Eq. (1) accounts for the hopping of electrons
between nearest-neighbor sites; Ui is the on-site Coulomb
repulsion energy and h is the Zeeman energy related to an
applied magnetic field B⃗. t sets the energy scale of the
problem; we assume cyclic boundary conditions and
restrict our results to half filling (

P
i;σhn̂i;σi=L ¼ 1; h·i is

understood as the ground state average). For the inter-
actions, we focus on the case where they are chosen in a
periodic fashion with the repeated intercalation of the
Ui ¼ U > 0 and Ui ¼ 0 sites [Fig. 1(a)].
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To understand how this simple model leads to a crude
interpretation of magnetic and nonmagnetic regions, it is
useful to recall the dependence of the local moment,
hm̂2

i i≡ hðn̂i;↑ − n̂i;↓Þ2i, on the interaction magnitude
within a homogeneous lattice [inset of Fig. 2(a)].
Starting from the noninteracting regime, it assumes a value
of 1=2, at this density, and steadily increases towards 1
when approaching the Heisenberg limit for large U. Thus,
interactions induce the formation of magnetic moments,
and when generalizing to a superlattice configuration, this
is still the case, albeit less dramatically due to a natural
density imbalance between repulsive and free sites
[Figs. 2(a) and 2(b)]. This argument leads to the simple
association that U > 0 and U ¼ 0 types of sites can mimic
the physics of magnetic and nonmagnetic regions in actual
materials.
In what follows, we have used Lanczos diagonalization

[15] and density matrix renormalization group (DMRG)
[16,17] to obtain the ground state properties of the super-
lattices. We notice that when dealing with independent

sectors of the Hamiltonian with a given total magnetization
in the z direction, Sz ¼ 1

2
ðN↑ − N↓Þ (Nσ is the total number

of particles with spin σ), the Zeeman energy is trivially
accounted for and results in a shift of the energies for finite
values of the external magnetic field. Thus, as h grows,
different sectors will host the ground state of the
Hamiltonian, as exemplified in Fig. 2(d).
Density of states.—To see how this space-dependent

local moment affects the transport properties in Eq. (1)
and connects our problem to the known phenomenology
of the GMR effect, we obtain the density of states
by computing single-particle excitations in the ground
state. This is accomplished by numerically calculating
dynamical quantities as the spectral function [18,
19], Aσ

kðωÞ¼
P

njhψ0jĉ†k;σjψNσ−1
n ij2δ(ωþðENσ−1

n −E0Þ)þP
njhψ0jĉk;σjψNσþ1

n ij2δ(ω−ðENσþ1
n −E0Þ), which describes

the dynamical response of creating a fermion and a hole
with momentum k and spin σ in the ground state jψ0i (with
eigenenergy E0) of the Hamiltonian; jψNσ�1

n i (ENσ�1
n ) are

eigenstates (eigenvalues) of the Hamiltonian with an added
or removed electron. When summing up all possible
momentum excitations, one recovers the actual density
of states, N σðωÞ ¼ ð2=LÞPkA

σ
kðωÞ ¼ N þ

σ ðωÞ þN −
σ ðωÞ,

where we have resolved the contributions for electron and
hole excitations in the last equality. To mitigate the
influence of finite-size errors, we have employed twisted
boundary condition averaging [20–22]; this has been used

(a)

(c)

(d)

(b)

FIG. 2. Local moment hm̂2
i iU (hm̂2

i i0) and its dependence on the
interaction strength in repulsive (free) sites, marked by full
(empty) symbols in (a), for the superlattice with h=t ¼ 0. (Inset)
The same for a homogeneous lattice; the dashed line denotes the
Heisenberg limit of full localization. Site-dependent interactions
break particle-hole symmetry and lead to an imbalance of the
densities in both types of sites, as shown in (b). In (c), the spin
correlations for nearest and next-nearest repulsive sites, taking a
repulsive site as the reference, as a function of the external field
magnitude with U=t ¼ 4. (Inset) The negative correlations for
h ¼ 0. All results are presented for a lattice with L ¼ 64, using
DMRG. (d) Dependence on the Zeeman field of the lowest
energy state for different Sz sectors of Eq. (1). The ground state is
represented by the lower dashed-dotted curve enveloping the
lines of each sector.

(a)

(b) (c)

(d)

FIG. 1. (a) Schematic representation of the superlattice with the
picture for transport and magnetism (see the text), in the absence
or presence of an external magnetic field B⃗. In (b) [(c)], we
display the spin-resolved density of states of the superlattice
(L ¼ 16) at zero temperature for h ¼ 0 (h ≠ 0). In the absence of
the field, the Mott gap renders an insulating behavior, while the
latter, a metal induced by the field, has a much higher mobility for
charges with spin aligned to B⃗, as highlighted by the difference in
local density of states at the Fermi energy for finite population
imbalances in (d). Shading surrounding the curves depicts the
error bars after the twisted boundary condition averaging and
dashed lines, the Fermi energies.
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in a variety of contexts so as to approach the results in the
thermodynamical limit with limited system sizes [25–29],
and it has been shown [30] to be especially relevant for the
case of dynamical quantities [22].
In Figs. 1(b) and 1(c), we report this quantity for h ¼ 0

and h ≠ 0, respectively, for U=t ¼ 4, averaged among 64
boundary conditions. In the absence of an external field, the
interactions, even if not present in every site, induce the
formation of a Mott gap separating the lower and upper
Hubbard bands; therefore, the ground state is a perfect
insulator. Now, by applying an external magnetic field, the
ground state no longer has the total Sz ¼ 0, but, rather,
finite values. For, say h=t ¼ 0.75, single-particle excita-
tions in the ground state, which has Sz ¼ 2, display a
metallic behavior [31]. Moreover, the difference in the local
density of states of both spin channels in repulsive sites at
the Fermi energy, ΔN U ¼ N U

↑ −N U
↓ [22], shows that the

transport is facilitated when there is a population imbalance
[Fig. 1(d)]. Hence, if one injects a non-spin-polarized
current in the superlattice [see Fig. 1(a)], the transport is
enhanced, similar to the GMR effect, also realized in
nanowires [32–34]. Now, this is one of the differences
between the standard GMR and our results: In the actual
experiments, the material, being metallic, possesses a finite
conductivity which is enhanced by the application of a
magnetic field. Here, we start from a perfect insulator and
see that it induces metallic behavior. In other words, the
model we investigate displays perfect magnetoresistance,
provided the field is sufficiently large to induce a finite
magnetization in the ground state.
Relative magnetization.—A further characterization of

the similarity between our results and the GMR physics can
be seen through spin correlations. We notice that, in the
latter, transport is enhanced when the magnetization of
consecutive ferromagnetic layers is made parallel. In
Fig. 2(c), we show the dependence on the Zeeman energy
of the spin-spin correlation hŜαi ŜαiþjiU ≡ ð1=4Þhmα

i m
α
iþjiU,

where i is a repulsive site and j is either the nearest or
next-nearest site, also with U > 0; α is the direction of
the applied Zeeman field. We notice that, for the values of
the field where we observe the enhancement on the trans-
port via the analysis of NðωÞ, these spin correlations are
positive, denoting parallel orientation, while they are
slightly negative in its absence. The arrows in Fig. 1(a)
schematically represent this situation.
Transport properties: Drude weight.—A robust way of

checking the transport properties of quantum systems is via
the Drude weight, D=πe2, that measures the density of
mobile charge carriers to their mass, or charge stiffness
[35,36]; i.e., in the thermodynamic limit D ≠ 0 (D ¼ 0)
signals a metallic (insulating) behavior. This quantity
appears in the real part of the q ¼ 0 optical conductivity,
σðωÞ ¼ DδðωÞ þ σregðωÞ, as a weight for the singular
behavior at zero frequency; it has also been shown by
Kohn [37] that it can be computed from the change of the

ground state energy E0 to an applied fluxΦ on the lattice as
[38]

D
πe2

¼ L

�∂2E0

∂Φ2

�����
Φ¼0

; ð2Þ

being related to the induction of persistent currents in
the system. The flux is introduced in the Hamiltonian (1)
via a Peierls substitution on the hopping terms of the
Hamiltonian, i.e., −tĉ†i;σ ĉiþ1;σ → −teiϕĉ†i;σ ĉiþ1σ [23,35,36],
where ϕ ¼ Φ=L [39]. It is important to highlight that these
phases are of merely mathematical help and do not alter the
external magnetic field introduced in the Zeeman term of
Eq. (1), since the latter could be taken as perpendicular to
the field associated to the flux Φ. Besides, they also do not
change physical observables as, e.g., densities [38].
A typical dependence of the ground state energy of the

superlattice with the flux Φ, for Sz ¼ 1, is presented in the
inset of Fig. 3(a), for different values of L. Lattices with
L ¼ 4n (n is an integer) are known to display a para-
magnetic response (D < 0) [35]. For that reason, we focus
on the absolute values of D and its dependence on the
Zeeman field, in Fig. 3(a), for different system sizes to
understand whether it can show signatures of the enhance-
ment of transport as observed in the density of states.
Likewise, Fig. 3(b) shows the corresponding difference in
energy between the cases with periodic ðΦ ¼ 0Þ and
antiperiodic boundary conditions ðΦ ¼ πÞ, ΔEð0; πÞ by
using DMRG calculations in much larger lattices. Since the
difference in energies will be finite as long as the curvature
of E0ðΦÞ at Φ ¼ 0 is finite, provided there are no other
local minima or maxima in 0 < Φ < π, it is suitable to
track ΔEð0; πÞ, as one deals only with real numbers in the

(a) (b)

FIG. 3. (a) Drude weight dependence on the Zeeman energy for
the superlattice with interaction strength U=t ¼ 4 and different
system sizes. These are obtained via Lanczos diagonalization
after using Eq. (2) to obtain the curvatures of E0L vsΦ curves; an
example for zero field is presented in the inset. (b) The energy
difference between periodic and antiperiodic boundary condi-
tions for much larger system sizes obtained via DMRG as a
function of the Zeeman energy.
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numerics. The qualitative behavior for the two quantities is
similar: An initially finite and small Drude weight is
suddenly increased after the ground state acquires a finite
magnetization, for growing values of the field. At an even
larger h=t, the transport decreases and the system becomes
(band) insulating at a saturation Zeeman energy hsat. This
corresponds to the situation where the ground state is fully
polarized and the Pauli exclusion principle prevents any
charge mobility.
A finite-size scaling is in order to assess the thermody-

namic limit. We report in Fig. 4(a) the system size
dependence of D at h ¼ 0 and at the value of the field
that gives the maximum Drude weight, jDjmax

h ; the insets
display the same for ΔEð0; πÞ (with qualitative similar
results), comparing a wide range of interactions U=t. In the
former, we notice that, by using the functional form of
Ref. [23], jDj ∝ ffiffiffiffiffiffiffiffi

L=ξ
p

e−L=ξ (ξ is the Mott localization
length), derived from the Bethe ansatz equations and thus
valid for homogeneous chains, one can equally fit our data
in the case of superlattices. Remarkably, half-filled super-
lattices possess insulating behavior when L → ∞ in the
absence of an external magnetic field, i.e., DL→∞ → 0. On
the other hand, for the maximum Drude weight, a linear
extrapolation with 1=L results in finite D values [or
ΔEð0; πÞ]: The introduction of a magnetic field induces
transport of the charges or, more precisely, an insulator-to-
metal transition, for h=t ≈ 0.5, and is particular to super-
lattices [22].
This is valid in the regime where U=t is finite since

increasing the interactions leads to a smaller Drude weight
in large lattices [Fig. 4(b)]. Apart from that, the enhance-
ment of D in respect to the insulating case is constrained to
regimes of finite magnetizations of the ground state other
than Sz ¼ N↑=2 ¼ L=2. This generates a range of values of
h=t where the magnetoresistance in our model can be
manifest. Figure 5 analyzes how this range depends on the

interaction magnitudes being limited by h�, where the
ground state no longer has Sz ¼ 0, and hsat.
Summary and discussion.—We used a simple model, the

Hubbard model with periodic site-dependent interactions
under the presence of an external magnetic field, and we
identify results analogous to the GMR phenomenon in a
purely interacting setting. This is achieved via the identi-
fication of repulsive (noninteracting) regions as being
magnetic (nonmagnetic), similar to the “sandwiches” of
ferromagnetic and nonmagnetic layers in experimental
samples. The combined quantification of transport and
spin correlation functions show that when the magnetiza-
tion in consecutive “magnetic” regions is made parallel due
to the application of the magnetic field, the transport is
enhanced, and an insulator-to-metal transition is obtained.
An investigation of other densities and configurations of
the superlattices may be relevant in the optimization of
these features but goes beyond the scope of this Letter.
Most importantly, these results transcend the curiosity of

solving a simple interacting model and have the possibility
of being emulated using cold atoms trapped in optical
lattices; charges and spin degrees of freedom are then
translated into atoms and its hyperfine states, respectively.
Besides, spatially dependent interactions are becoming a
reality in experiments of ultracold gases. The usage of
optical control to induce Feshbach resonances [40–44] and,
consequently, local interactions, has witnessed new break-
throughs [45,46] that we envision being sufficient to
investigate the space-dependent interactions of this model.
Last, a verification of our results in experiments would
require a precise quantification of transport of trapped
atoms. Recently, however, this has been shown to be
achievable when emulating the Hubbard model, either
when focusing on spin [47] or charge [48] degrees of
freedom. For this reason, our results may inspire exper-
imentalists in understanding this highly unusual transport

(a) (b)

FIG. 4. System size scaling of the Drude weight in (a) the
absence of a magnetic field and (b) for the value of h that results
in the largest D for a given system size. (Insets) The respective
scaling analyses for ΔEð0; πÞ, where the empty symbols denote
the DMRG results, for larger systems.

FIG. 5. Regime of parameters where the insulator-to-metal
transition is observed (shaded area). Small (large) values of the
field, result in a Mott (band) insulator. (Inset) The finite-size
scaling of the saturation field, shown as an example. hsat can be
similarly obtained via an analysis of an effective two-body
problem [22].

PHYSICAL REVIEW LETTERS 121, 020403 (2018)

020403-4



mechanism, which has a deep connection with the GMR
effect, a phenomenon usually constrained to the condensed
matter realm.
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