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Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We
show that under equilibrium conditions the management of quantum noise becomes extremely flexible
around the quantum critical point of a quantum many-body system: this is due to the critical divergence of
quantum fluctuations of the order parameter, which, via Heisenberg’s inequalities, may lead to the critical
suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the
paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing
of one spin component, providing a scaling for the precision of interferometric parameter estimation which,
in dimensions d > 2, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical
squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in d ¼ ∞
(or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range
of temperatures in d ¼ 2 and 3. This demonstrates the immediate metrological potential of equilibrium
many-body states close to quantum criticality, which are accessible, e.g., to atomic quantum simulators via
elementary adiabatic protocols.
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Introduction.—Observables in extended physical sys-
tems (classical or quantum in nature) are affected by
intrinsic uncertainty, which typically results from an
extensive number of uncorrelated, microscopic local con-
tributions. As a consequence, the squared uncertainty
scales linearly with system size, in compliance with the
central limit theorem. Yet collective phenomena, such as
phase transitions, may lead to the appearance of sizable
correlations among the constituents, leading to the break-
down of the central limit theorem and to superextensive
scaling of fluctuations, which clearly aggravates the uncer-
tainty of the corresponding observable. However, in quan-
tum systems, uncertainties of noncommuting observables A
and B may play complementary roles as they obey
Heisenberg’s inequality VarðAÞVarðBÞ ≥ jh½A;B�ij2=4
[where VarðAÞ ¼ hA2i − hAi2 and h…i ¼ Trðρ…Þ denotes
the average on the state ρ—pure or mixed—of the system].
In the following, we shall focus on the physically relevant
situation in which A, B, and ½A;B� are extensive observ-
ables. As a consequence of Heisenberg’s inequality, the
critical increase of fluctuations of A leads to a suppression
of the lower bound for the fluctuations of B. The reduction
of a lower bound is hardly constraining for the actual
behavior of fluctuations, but it may be so for quantum states
realizing minimal (or close to minimal) uncertainty, namely
(nearly) saturating Heisenberg’s inequality.
In this Letter, we show that this counterintuitive

mechanism of critical suppression of fluctuations, by
which the scaling of VarðBÞ becomes subextensive when

the one of VarðAÞ becomes superextensive, is indeed at
play at a quantum critical point (QCP) [1] occurring in the
ground state of quantum many-body systems, implying
that a QCP generically allows one to tune the quantum
noise of extensive observables to extraordinarily low
values. The redistribution of quantum noise among
observables is known in the quantum optics and atomic
physics literature as squeezing [2–4]: in the context of
quantum spin systems (modeling electronic or nuclear
spins in solids, or the internal states of atomic ensembles),
spin squeezing [3] has both a fundamental meaning as a
manifestation of entanglement [5–7], as well as an
immediate application in the context of quantum metrol-
ogy, leading to a fundamental gain in interferometric
quantum parameter estimation [8]. In particular, we show
here that paradigmatic spin models of quantum phase
transitions (QPTs) exhibit quantum critical spin squeezing
at the zero-temperature QCP [9,10], which generically
implies the subextensive scaling of the variance of one
observable; and that squeezing is also manifest in a broad
region of the finite-temperature phase diagram around the
QCP, making it of interest to realistic metrological
protocols. Even more important, for sufficiently high
dimensions, we show that equilibrium squeezing nearly
saturates the maximum metrological gain dictated by the
quantum Fisher information [11,12], demonstrating that a
metrological protocol which exploits the equilibrium spin
squeezing of thermal states in the vicinity of a QCP is
(nearly) optimal.
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Before entering into the core of our Letter, we stress that
our discussion of the metrological use of phase transitions
differs from that offered in the literature on Hamiltonian-
parameter estimation; see Refs. [13–18] for representative
examples. The focus of this literature is the distinguish-
ability among equilibrium states, which becomes maximal
around phase transitions (be them thermal [19] or quantum
[20]), allowing for an optimal estimation of the parameter
driving the transition itself (external magnetic field, temper-
ature, etc.). On the other hand, our study focuses on
equilibrium states used as input of interferometers (namely,
unitary transformations parametrized by a phase ϕ [4,11])
and their augmented ability to estimate the interferometric
phase in the presence of quantum correlations.
Model.—Throughout this Letter, we focus on a para-

digmatic spin model of quantum phase transitions, the
transverse-field Ising (TFI) model, whose Hamiltonian on
finite-dimensional systems reads

H ¼ −J
X
hiji

SziS
z
j − Γ

X
i

Sxi ; ð1Þ

where Sαi are S ¼ 1=2 quantum spins, the sums run on
nearest-neighboring pairs and sites (respectively) of a d-
dimensional hypercubic lattice containing N ¼ Ld sites,
and J > 0. In the special case of d ¼ ∞ (or an infinite-
connectivity model), the Hamiltonian takes rather the form

H ¼ −
J
N

X
i<j

SziS
z
j − Γ

X
i

Sxi : ð2Þ

The TFI model is a cornerstone in the theory of QPTs [1]: a
critical value gc of the transverse field g ¼ Γ=J separates a
low-field ferromagnetic phase with spontaneously broken
symmetry from a high-field quantum paramagnetic phase
lacking long-range order. Interestingly its infinite-dimen-
sional version, Eq. (2), has been often discussed in the
theory of spin squeezing [9,21–23] and implemented to
dynamically generate spin squeezing in recent atomic
physics experiments with spinor gases and trapped ions
[24–26]. On the contrary, the metrological aspects of its
finite-d versions have been far less discussed [27]. Here, we
focus on the ground-state and finite-temperature properties
of the above model making use of its exact solution in
d ¼ 1 and ∞, together with numerically exact quantum
Monte Carlo (QMC) simulations [28] (see the
Supplemental Material for further details [29]).
Quantum Fisher information vs squeezing.—Modeling

the interferometer with a unitary transformation eiϕO, the
minimal uncertainty on the estimation of ϕ is provided by
the quantum Fisher information (QFI) of the generator
O ¼ P

N
i¼1Oi via the quantum Cramér-Rao bound [11]

ðδϕÞ2 ≥ 1

kQFIðOÞ ¼
χ2

kN
; ð3Þ

the QFI is defined as QFIðOÞ ¼ 2
P

nmðpn − pmÞ2×
jhmjOjnij2=ðpn þ pmÞ, where jni (jmi) are eigenstates of
the density matrix ρ with eigenvalues pn (pm), and is k the
number of independent measurements performed. A factor
χ2 ¼ N=QFIðOÞ < 1 witnesses a metrological gain with
respect to the shot-noise limit and the presence of entangle-
ment [34–36]. For pure states QFIðOÞ ¼ 4VarðOÞ; hence,
choosingO as the (extensive) order parameter of a QPT, one
can exploit its critical superextensive fluctuations VarðOÞ ∼
N1þζ (ζ > 0) to achieve sub-shot-noise precision, namely,
ðδϕÞ2 ∼ N−1−ζ and χ2 ∼ N−ζ. For the TFI model in dimen-
sions d ≤ dc ¼ 3,O is the z component of the collective spin
J ¼ P

iSi, and ζ ¼ ð2 − η − zÞ=d ¼ ð1 − ηÞ=d > 0, where
η and zð¼ 1Þ are the anomalous dimension and dynamical
critical exponent of the QPT, respectively. Above the upper
critical dimension d > dcð¼ 3Þ, ζ takes the above formwith
dc instead of d [37], while η ¼ 0.
The above-cited result on the QFI already embodies the

metrological interest of QCPs but remains silent about the
specific measurement able to enjoy the quantum critical
metrological gain witnessed by the QFI. Of much more
immediate utility is instead Heisenberg’s uncertainty prin-
ciple for the collective spin

VarðJyÞ ≥ hJxi2
4VarðJzÞ ; ð4Þ

which, at the QCP, allows one to conclude that
VarðJyÞ ≥ OðN1−ζÞ; namely, the lower bound on the
variance of Jy acquires a subextensive scaling at criticality.
Similarly, the spin-squeezing parameter [8]

ξ2R ¼ NVarðJyÞ
hJxi2 ð5Þ

acquires a vanishing lower bound at criticality,
ξ2R ≥ N=½4VarðJzÞ� ∼OðN−ζÞ. This lower bound can also
be predicted via the inequality ξ2R ≥ χ2 [38]. When smaller
than 1, ξR expresses the metrological gain in Ramsey
interferometry with respect to uncorrelated states, namely,
ðδϕÞ2 ¼ ξ2R=ðkNÞ [8], and also witnesses entanglement [5].
The critical scaling of the lower bound on ξ2R and VarðJyÞ is
suggestive of the possibility to observe quantum critical
scaling of spin squeezing, but only explicit microscopic
calculations can test whether critical squeezing is indeed
achieved or not.
Quantum critical squeezing.—Our joint exact or numeri-

cal study of the ground-state scaling of Jy fluctuations
shows a very complex and intriguing picture upon varying
the number of dimensions; see Fig. 1. The case of d ¼ ∞ is
exactly solved by writing the Hamiltonian in the jS;Mi
basis of eigenstates of J2 and Jz and diagonalizing it in each
S sector separately. There at the QCP gc ¼ 1, one observes
numerically that ξ2R ≃ χ2 ∼ N−1=3 (as already noticed in
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Refs. [4,9,10,23]); namely, the ground state in d ¼ ∞ is a
minimal uncertainty state, realizing the maximum quantum
critical squeezing authorized by Heisenberg’s inequality.
This can be understood using elementary quantummechan-
ics, as in the vicinity of the QCP (but strictly speaking, not
at the QCP) a Holstein-Primakoff transformation maps the
model onto a collection of harmonic oscillators, admitting a
minimum-uncertainty ground state [4,29].
On the opposite side of the spectrum lies the case of

d ¼ 1, whose exact solution based on Jordan-Wigner
mapping onto free fermions [39] shows that VarðJyÞ at
the critical point gc ¼ 1=2 exhibits a conventional volume-
law scaling. Therefore, squeezing, albeit present [namely,
ξ2R < 1 with a minimum at g ≈ 0.62 > gc, and a minimum
VarðJyÞ at g ≈ 0.6], does not show any sign of quantum
critical scaling, as already remarked in Ref. [27]. This
observation is in stark contrast to the χ2 factor, rapidly
scaling to zero as N−3=4 (η ¼ 1=4). Hence, conventional
Ramsey interferometry is far from being the optimal
protocol exploiting the significant metrological potential
of the QCP in the 1d TFI model.
The above results, which were already partly known in

the literature [9,10,27], are interpolated in a very nontrivial
way in the intermediate cases 1 < d < ∞ (lacking an exact
solution). There, our QMC results show that squeezing
scales as ξ−2R ∼ N−ζ0 with an exponent ζ0, which becomes
consistent with the one (ζ) dictated by the Heisenberg
bound only for d ≥ 3. Indeed, Fig. 1 shows that in d ¼ 2 at
gc ¼ 1.52219… [40], the squeezed fluctuations per spin
VarðJyÞ=N appear to saturate towards a very small yet

finite value, indicating that ζ0 ¼ 0 < ζ ¼ 0.4818… (using
the exponents of the 3d Ising universality class [41]). On
the other hand, at the mean-field transition in d ¼ 3
(gc ¼ 2.579… [40]), a fit to the data in Fig. 1(a) gives
ζ0 ¼ 0.329ð1Þ ≈ ζ ¼ 1=3 (these results are summarized in
Table I). This means that the upper critical dimension dc ¼
3 for the Ising quantum phase transition corresponds to the
lower critical dimension for arbitrarily strong spin squeez-
ing to be observed at quantum criticality. This can be
understood in that a finite value of the anomalous dimen-
sion η for d < dc represents an obstruction to the vanishing
of VarðJyÞ=N, as we shall discuss in a future publication
[42]. A closer inspection of Fig. 1(b) shows that, the
number of spins being held fixed, the strongest squeezing is
obtained at criticality in d ¼ 3 (and not in d ¼ ∞). Hence,
the strongly correlated critical point generated by short-
range interactions possesses more squeezing than the one
stabilized by mean-field (infinite-range) interactions.
Quantum correlations and squeezing along the QC

trajectory.—We now turn to the finite-temperature case,
most relevant from the perspective of potential experimental
implementations. A realistic experimental situation involves
the system being prepared with g ≫ 1, namely, in a coherent
spin state⊗N

i¼1 j↑xii, and then adiabatically transformed by
lowering the g ratio towards the critical gc value. Inevitable
deviations from adiabaticity will produce an equilibrium
state at finite temperature or entropy density at the end of the
g ramp. We then ask the question: how much of the
remarkable metrological properties of the ground state
survive at finite temperatures in the vicinity of the QCP?
We start addressing this question by exploring the

evolution of metrologically relevant observables along
the so-called quantum critical trajectory (sketch in
Fig. 2), namely, by scanning the temperature at g ¼ gc.
Figures 2(a)–2(d) show the temperature dependence of the
squeezing parameter, along with that of the χ−2 parameter
(when calculable, namely, for d ¼ 1 [43] and∞), as well as
the quantum variance (QV) of the order parameter intro-
duced by us in Ref. [44]. The latter is defined as

QVðJzÞ ¼ hðJzÞ2i − kBT
Z ðkBTÞ−1

0

dτhJzðτÞJzð0Þi; ð6Þ
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FIG. 1. Squeezing at the QCP. (a) Scaling of the variance of the
collective spin component Jy ¼ P

iS
y
i in d ¼ 1, 2, 3, and d ¼ ∞.

Data are taken at g ¼ 0.62 and T ¼ 0 from the exact solution on a
system with open boundaries in d ¼ 1 and at g ¼ gc for all other
dimensions. The data for d ¼ ∞ are the T ¼ 0 exact solution,
while the data for d ¼ 2 and d ¼ 3 come from QMC simulations
on an N ¼ Ld lattice with periodic boundaries, at temperatures
sufficiently low to eliminate thermal effects [as low as kBT ¼
J=ð6LÞ in d ¼ 2 and kBT ¼ J=ð5LÞ in d ¼ 3]. Dashed lines are
power-law fits to the form a × Nζ0 . The solid line indicates the
shot-noise limit VarðJyÞ=N ¼ 1=4. (b) Scaling of the spin-
squeezing parameter ξ2R. Same significance of symbols as in
panel (a).

TABLE I. Exponent for the quantum critical scaling of the
squeezing parameter ξ−2R (ζ0) and of the χ−2 parameter (ζ); the
latter corresponds to 4VarðJzÞ=N at T ¼ 0.

Scaling exponent
at the QCP ζ0 (ξ−2R ∼ Nζ0 ) ζ [VarðJzÞ=N ∼ Nζ]

d ¼ 1 0 3=4
d ¼ 2 0 0.4818…
d ¼ 3 ≈1=3 1=3
d ¼ ∞ 1=3 1=3
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where JzðτÞ ¼ eτHJze−τH. The QV is known [44,45] to
tightly bound the QFI and, hence, the χ2 parameter as

QVðJzÞ
N

≤
1

4
χ−2 ≤ 3

QVðJzÞ
N

: ð7Þ

As a consequence, ξ−2R ≤ χ−2 ≤ 12QVðJzÞ=N. These
bounds to the χ−2 parameter turn out to be extremely useful
because (1) they are thermodynamical quantities generically
computable with large-scale numerics such as the QMC
method adopted here, while the QFI (contained in χ) is not,
unless one has access to the exact solution of the model [43];
and (2) the joint upper bound to the squeezing parameter and
the χ−2 one offered by the QV allows one to probe directly
how close ξR and χ are, even if χ is unknown. Indeed, if ξ−2R
approaches 12QV=N, we know for sure that χ−2 is tightly
sandwiched in between. We observe that in all dimensions,
ξ−2R saturates its upper bound (and, therefore, coincides with
χ−2) for sufficiently high temperatures; namely, the QFI and
the squeezing parameter contain the same information. But
the lower the dimension, the higher the temperature at which
the two quantities start to deviate, and particularly so in
d ≤ 2, as χ−2 displays a power-law divergence as T → 0

(consistent with QC behavior [43,45]), while ξ−2R does not
diverge (see Fig. 1). For d ≥ 3, ξ−2R is seen to exhibit QC
temperature scaling consistent with its divergence at T ¼ 0
but with a seemingly different power law with respect to the
oneof χ−2 andof theQV(which exhibits the samedivergence
as the QFI [45]). Yet, already in d ¼ 3, the squeezing

parameter and the χ2 parameter remain extremely close to
each other down to very low temperatures T ∼ 10−1J.
Finally, for d ¼ ∞, ξ2R and χ2 are seen to coincide at any
temperature, and this despite the strong finite-size effects that
infinite-range interactions entail.
Finite-temperature squeezing around the critical point.—

Finally, to demonstrate the potential metrological utility of
the equilibrium physics close to the QCP, we map out the
squeezing parameter in the temperature-field plane.
Figure 3 shows ξ−2R as a function of the field and temper-
ature in the case of d ¼ 2 and ∞ (analogous figures for
d ¼ 1 and 3 are shown in the Supplemental Material [29]).
It is remarkable to observe that the very existence of
squeezing ξR < 1 is essentially induced in the model by the
existence of the QCP. Indeed, for g → ∞, the ground state
is a coherent spin state with ξR ¼ 1, and squeezing is not
produced at finite temperature either. The introduction of
spin-spin interactions (g < ∞) produces correlations and
squeezing in the ground state. A perturbative calculation
[29] shows that ξ2R ¼ 1 − d=ð2gÞ þOðg−2Þ, and ξR
decreases monotonically upon decreasing g towards the
QCP. Such ground-state squeezing is protected at a finite
temperature by the existence of the spectral gap controlled
by the field (and linear in Γ at large Γ=J). Upon approach-
ing the QCP, the gap closes, but ground-state squeezing
becomes critical (in d > 2), and, as a consequence, it
remains sizable at a finite temperature (up to T=J ∼ 0.5) or,
equivalently, at finite entropy density. As we explicitly
show in the Supplemental Material [29], an adiabatic
protocol ramping down the transverse field from the

T/J T/J

(a)
(b)

(d)

(c)

FM  QPM

FIG. 2. Quantum correlations along the quantum critical
trajectory. Squeezing parameter ξ2R, χ

−2 parameter, and its bounds
provided by the quantum variance for the TFI model as a function
of the temperature at g ¼ gc: (a) d ¼ 1, N ¼ 50; (b) d ¼ 2,
N ¼ 642; (c) d ¼ 3, N ¼ 283; (d) d ¼ ∞, N ¼ 1000.

FIG. 3. Squeezing around the QCP. Squeezing parameter ξ−2R
(in dB) across the phase diagram of the TFI model close to the
QCP: (a) d ¼ 2, N ¼ 642; (b) d ¼ ∞, N ¼ 500. The gray circle
marks the QCP, and the dashed blue lines indicate the critical
temperatures Tc on the ordered side (Tc values for d ¼ 2 from
Ref. [46], and for d ¼ ∞ from Ref. [47]). In the white region,
ξ−2R ≤ 1 (absence of squeezing).
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g → ∞ limit towards the QCP leads to cooling. As a
consequence the squeezing which is produced at the QCP is
intrinsically robust to a finite entropy density, produced by
deviations from adiabaticity or by noise sources. Once the
QCP is crossed, squeezing is quickly lost as one enters the
ordered phase; the finite-size ground state for g ≪ gc is a
Schrödinger’s cat state with no squeezing.
Conclusions and perspectives.—In this Letter, we have

unveiled the interest of using equilibrium quantum many-
body states lying in the vicinity of a QCP as input states for
interferometric measurements which beat the shot-noise
limit. We have revealed that extreme spin squeezing—
diverging with system size—appears at the QCP of the
quantum Ising model in d ≥ 3, and that very strong
squeezing associated with equally strong quantum corre-
lations survives up to sizable temperatures or entropy
densities above the QCP. In particular, the precision of
standard Ramsey interferometry interrogating the collective
spin of the output state nearly saturates the quantum
Cramér-Rao bound down to low temperatures in d ¼ 3
and higher, showing that the quantum correlations of QCPs
can be potentially exploited in current metrological setups
such as atomic clocks. The metrological potential of QCPs
in d < 3 can instead only be exploited via more complex
observables due to the non-Gaussian nature of the corre-
sponding states [48]. Our findings are immediately relevant
to quantum simulation setups realizing the quantum Ising
model and its quantum phase transition, namely, trapped
ions [26], Rydberg atoms [49,50], ultracold binary atomic
mixtures [51], or superconducting circuits [52], suggesting
that quantum simulators of quantum critical phenomena
can potentially find an application as quantum sensors.
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T. Lahaye, and A. Browaeys, Nature (London) 534, 667
(2016).

[50] V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A.
Browaeys, M. Schuler, L.-P. Henry, and A. M. Läuchli,
Phys. Rev. X 8, 021070 (2018).

[51] J. Sabbatini, W. H. Zurek, and M. J. Davis, Phys. Rev. Lett.
107, 230402 (2011).

[52] T. Lanting et al., Phys. Rev. X 4, 021041 (2014).

PHYSICAL REVIEW LETTERS 121, 020402 (2018)

020402-6

https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevLett.49.478
https://doi.org/10.1103/PhysRevLett.49.478
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1038/nphys3700
https://doi.org/10.1038/nphys3700
https://doi.org/10.1103/PhysRevB.94.075121
http://arXiv.org/abs/1805.03140
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1103/PhysRevB.74.144423
https://doi.org/10.1103/PhysRevB.74.144423
https://doi.org/10.1126/science.1250147
https://doi.org/10.1126/science.1250147
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature18274
https://doi.org/10.1103/PhysRevX.8.021070
https://doi.org/10.1103/PhysRevLett.107.230402
https://doi.org/10.1103/PhysRevLett.107.230402
https://doi.org/10.1103/PhysRevX.4.021041

