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Transition paths are the most interesting part of folding reactions but remain little studied. We measured
the local velocity along transition paths in DNA hairpin folding using optical tweezers. The velocity
distribution agreed well with diffusive theories, yielding the diffusion coefficient. We used the average
velocity to calculate the transmission factor in transition-state theory (TST), finding observed rates that
were ∼105-fold slower than predicted by TST. This work quantifies the importance of barrier recrossing
events and highlights the effectiveness of the diffusive model of folding.
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Transition paths are the part of a reaction spent crossing
the energy barrier between reactants and products [1–3].
In the context of biomolecular folding reactions, the
reactants and products are the folded and unfolded states
of the molecule (Fig. 1). Transition paths represent the most
interesting part of the trajectories in folding reactions
because they encapsulate all the key information about
folding mechanisms: the high-energy transition states in the
barrier region that are occupied during the transition paths
dominate the kinetics of the folding and define the
mechanism. Transition paths are very difficult to measure
experimentally, however, owing to their brief duration,
typically on the μs scale and hence 1000- to 1 × 106-fold
(or more) shorter than the lifetime of the unfolded or folded
states, posing technical challenges for the single-molecule
measurements that are required to observe them. As a
result, they have not been experimentally accessible until
recently [4].
Improvements in single-molecule methods have now

allowed transition-path properties to be measured directly
[5–11]. To date, these studies have focused primarily on the
time required for the transition to take place: the average
transition-path time has been measured for both proteins
[5–9] and nucleic acids [10,11] using advanced single-
molecule fluorescence and force spectroscopy methods,
and the variations in time for individual transition-path
crossings have been measured in proteins and nucleic acids
with force spectroscopy [12,13]. In many ways, however,
the local velocity along the transition paths is more
interesting than global properties like the transit time.
The velocity reflects the dynamics within the crucial
transition states, a feature of folding reactions that has
not been possible to observe previously. Furthermore,
measuring local variations in the transition paths provides
the most fine-grained experimental description that can be
achieved of the microscopic motions a molecule undergoes

while folding. Here we report the first measurements of
transition-path velocities, studying the folding of DNA
hairpins as a model system for “two-state” folding with
optical tweezers-based force spectroscopy [14]. We charac-
terized the properties of the local velocity along the transition
paths and related them to the physical picture of folding as a
diffusive search over an energy landscape [15–17].
Single DNA hairpins having different sequences and

energy landscapes (specifically, hairpins 20R0=T4,
20R25=T4, 20R55=T4, 20R100=T4, and 30R50=T4 from
Ref. [18] and 20TS06=T4 from Ref. [19]) were attached to
beads held in high-resolution optical traps via kilobase-
long linkers of double-stranded DNA [Fig. 2(a), upper
inset] as described [18] (see Supplemental Material [20]).
Hairpins were held under tension near F½, the force at
which the folded and unfolded states were equally occu-
pied, at constant trap separation. The end-to-end extension
of the molecule was measured as the hairpin fluctuated
in equilibrium between folded and unfolded [Fig. 2(a)],
yielding a total of ∼8500–46 000 transitions for each
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FIG. 1. Transition paths in folding reactions. A transition path
(dashed line) represents the part of the trajectory (gray) that crosses
the energy barrier (shaded region) separating the folded (F) and
unfolded (U) states.
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hairpin. High trap stiffness (0.75–1.1 pN=nm in one trap,
0.56–0.63 pN=nm in the other) was maintained to maxi-
mize the time resolution of the measurement; under these
conditions, the time resolution of the measurement was
6–9 μs [13], and the kinetic artifacts from beads and
handles [27] were small [28]. Transition paths were
identified from the extension trajectories [Fig. 2(b)] as
those parts of the trajectory passing between two bounda-
ries (x1 and x2) demarking the barrier region. In order to
capture as much of the dynamics between the folded (F)
and unfolded (U) states as possible, the barrier region was
defined as the middle 2=3 of the distance traversed between
F and U. We found the velocity of the transition paths vðtÞ
from the local slope of the trajectory xðtÞ. To reduce the
effects of random measurement noise, the trajectories
[Fig 2(b), black] were first smoothed with a smoothing

spline interpolation [Fig. 2(b), red] before numerical differ-
entiation [Fig. 2(b), upper inset] [20]. The velocity at each
position along the reaction coordinate vðxÞ was then found
directly from the curve vðtÞ as it crossed each x value,
allowing vðxÞ to be multivalued wherever recrossing events
occurred within a trajectory.
The velocity showed distinct local variations as the

molecule crossed the barrier region, reflecting complex
dynamics within the transition states. In some transitions
the motion was fast across the whole barrier [Fig 2(c), left],
but in others the fast motions were interrupted by periods of
slower motion [Fig 2(b)] and even transient reversals in the
direction of motion [Fig 2(c), center and right]. Episodes of
fast, slow, and reversed motion were distributed roughly
randomly along transition path from one transition to the
next. Indeed, the distribution of velocity as a function of
position within the barrier region measured from all
transitions for each hairpin [Figs. 3(a) and S1(a)] showed
velocities ranging from roughly −0.5 to 1.5 mm=s at all
positions. The overall distribution of velocities [Figs. 3(b)
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FIG. 2. Measuring transition paths in DNA hairpins with
optical tweezers. (a) The end-to-end extension of the hairpin
held under tension fluctuates between the folded and unfolded
states (dashed lines). Upper inset: Cartoon of measurement. A
hairpin attached to DNA handles is held between two beads
trapped by laser beams. Right inset: Probability distribution of
hairpin extension. (b) Zooming in on a single unfolding tran-
sition, the transition path is seen as that part of the trajectory
crossing between the boundaries defining the barrier region
(dotted lines). Inset: The velocity along the transition path is
found by differentiating the smoothed transition path. (c) Selected
unfolding transitions and corresponding velocity profiles show-
ing a wide range of velocities. The trajectory sometimes reverses
course along the transition path, reflecting barrier recrossing.
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FIG. 3. Transition-path velocity distributions. (a) The proba-
bility density for the velocity as a function of position within the
barrier region for the hairpin 30R50/T4. Inset: sequence of the
hairpin 30R50/T4. (b) The distribution of velocities measured at
all positions in the barrier region for the hairpin 30R50/T4 is
close to Gaussian. Inset: Fitting the distribution of velocities
observed at the barrier peak to a Gaussian yields D. (c) The
average velocity profile within the barrier region is the same for
folding (black) as for unfolding (red) but generally nonuniform.
Cyan: barrier region boundaries (x1, x2). Blue: position of barrier
peak (double dagger symbol). Insets: hairpin sequences. Error
bars represent standard error of the mean.
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and S1(b)] was close to Gaussian in all cases, but slightly
skewed; for each hairpin, negative velocities indicating
reversed motion were observed at every position within
the barrier region, providing direct evidence of barrier
recrossing events as expected for a diffusive process.
Finding the average velocity profile along the transition
paths from themean of the distribution at each position in the
barrier region, the result was the same for both folding
[Figs. 3(c), black] and unfolding [Figs. 3(c), red] transitions,
as expected from the time-reversal symmetry of the process.
Thevelocity profiles varied by∼10%–40%across the barrier
region and were noticeably different for different hairpin
sequences. A similar analysis applied as a control to
measurements of a reference construct consisting of handles
without any hairpin, where the construct was abruptly
stretched and relaxed [Fig. S2(a)] to generate extension
changes similar to those seen during folding transitions
[Fig. S2(b)], found a velocity profilewith a∼threefold higher
average velocity [Fig S2(c)] than seen with a hairpin present,
indicating that the response of the bead was not limiting the
measurement of the hairpin transition-path velocities.
We first considered what the transition-path velocity

distributions reveal about the diffusion coefficient during
folding, D. D is the crucial parameter that relates the
kinetics of the folding to the thermodynamics of the energy
landscape, reflecting the microscopic motions made by the
molecule in its conformational search [15] and the “internal
friction” that gives rise to speed limits in folding [29].
It is difficult to measure D using traditional approaches
based on analysis of rates via Kramers’ theory because
of its exponential sensitivity to errors in barrier energies
[8,11,30], but transition-path measurements provide a more
sensitive and robust way to probe it [6,13,31]. Recent
theoretical work showed that if a single type of transition
path dominates the folding, then a 1D harmonic barrier will
produce a Gaussian distribution of velocities at the barrier
peak with average velocity

hvðx‡Þi ≈ 1.5DðβκbÞ½; ð1Þ

where β is the inverse thermal energy and κb the barrier
stiffness [32]. The barrier-peak location for each hairpin

[Fig. 3(c), double dagger symbol] was taken as the average
of the results found previously from the force dependence of
the rates [18,19] and from energy-landscape reconstructions
using committor analysis of the extension trajectories
[13,33].
The velocity distribution at the barrier peak was

indeed reasonably well fit by a Gaussian for each hairpin
[Figs. 3(b), inset and S1(c)]. Calculating D from hvðx‡Þi
via Eq. (1), we found good agreement with values for D
obtained previously in independent ways: from the average
transition path time (τTP) [12,13], from the exponential
decay of the individual transit-time distribution [12,13],
and from the folding rates via Kramers’ theory [11]
(Table I). The trend of increasing D with increasing G:C
content found previously [13] was also recapitulated in the
results from hvðx‡Þi, enhancing confidence that the velocity
measurements are reliable. In addition, the quantitative
consistency of the results from four independent physical
properties of the folding, each of which assumes a single
dominant harmonic barrier and constant diffusivity, shows
that these assumptions are reasonable, at least for DNA
hairpins. They are not ideal, however, as suggested by the
slight skew in the velocity distributions at x‡ (skew
∼0.6–1.6). Indeed, Brownian-dynamics simulations of
transition path trajectories [20] show that anharmonicity,
position dependence of D, and the presence of multiple
types of transition paths can all generate skew in the
velocity distribution (Fig. S3). The observed skew likely
reflects contributions from each of these effects, since the
barriers are not strictly harmonic [13,19], D should vary at
least somewhat with position [34,35], and 1D descriptions
of hairpin folding are incomplete [36] even if they work
reasonably well [37].
The average velocity profile hvðxÞi shows even more

substantial deviations from the theoretical expectations.
For a dominant transition path with a 1D harmonic barrier
hvðxÞi is expected to have a minimum at the top of the
barrier [32]. In most cases, however, the velocity is not near
a minimum at the barrier top [Fig. 3(c)]. This disagreement
could arise from anharmonicity in the barrier, reflecting
the sensitivity of hvðxÞi to the barrier shape as found
previously in simulations [32], since energy-landscape

TABLE I. Comparison ofD from hvðx‡Þi, transition times, τTP, and rates. Results based on average transition time
(τTP) and distribution of transition times (PTPðtÞ) are from Refs. [12] and [13]. Results based on rates are from
Ref. [11]. Errors represent standard error on the mean.

DNA
hairpin

hvð‡Þi
(×102 μm=s)

D from hvð‡Þi
(×105 nm2=s)

D from τTP
(×105 nm2=s)

D from PTPðtÞ
(×105 nm2=s)

D from rates
(×105 nm2=s)

30R50=T4 2.0� 0.3 2.5� 0.4 3.5� 0.3 1.8� 0.2 4.6� 0.5
20R100=T4 2.4� 0.2 3.1� 0.4 4.1� 0.3 2.2� 0.2 � � �
20R55=T4 2.0� 0.2 2.6� 0.5 3.6� 0.3 1.5� 0.2 � � �
20TS06=T4 2.5� 0.2 2.6� 0.7 3.1� 0.3 1.6� 0.2 5� 3
20R25=T4 2.0� 0.2 2.6� 0.5 2.6� 0.3 1.3� 0.2 � � �
20R0=T4 1.7� 0.3 2.2� 0.3 2.5� 0.2 1.0� 0.2 � � �
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reconstructions show that the barriers are not completely
harmonic [13,19]. Another possibility is that D is not
constant (as assumed in the theory) but rather depends on
position, as may arise from the projection of the full
multidimensional landscape onto a 1D reaction coordinate
[35]; a modest position dependence is also expected from
the sequence dependence of diffusion in DNA duplexes
[13]. The likely influence on hvðxÞi of the position
dependence of D can be deduced by comparing the
experimental velocity profiles to those obtained from
Brownian dynamics simulations of transitions over the
energy landscapes measured for each of the hairpins
[13,19] made under the assumption of a constant D.
Although hvðxÞi from the simulations (Fig. S4) recapitu-
lates some of the qualitative features observed experimen-
tally [Fig. 3(c)], the details of the spatial variations differ,
suggesting that at least some of the variations come from
position dependence of D.
An intriguing aspect of transition-path velocities is that

they illuminate the role of barrier recrossing events in
folding reactions, by showing how recrossing alters the
observed rates and velocities from what would be expected
if instead classical transition-state theory (TST), which
neglects recrossing, held true. In TST, the microscopic
velocity is the thermal velocity of the molecule, vth ¼
ð2kBT=πmÞ½, where m is the mass. If barrier recrossing
does not occur, then the rate should be related to the
velocity across the barrier by

kTSTU=F ¼ Pðx‡Þvth=2PF=U; ð2Þ

where kTSTU=F is the transition-state theory rate for unfolding or

refolding, Pðx‡Þ is the Boltzmann-weighted equilibrium
occupancy at the barrier peak, and PF=U is the fractional
occupancy of the folded or unfolded state [2,38]. If barrier
recrossing does not occur frequently, then the observed rates
(kU=F) should be similar to kTSTU=F. However, if recrossing

events are significant then one would expect k ≪ kTST; the
transmission factor κ ¼ k=kTST quantifies the importance of
recrossing as the factor by which the rates are depressed
compared to TST. The transmission factor can also be
determined from the velocity, using relations between the
observed velocity, the probability distribution along the
transition paths, and the committor probability [32,39]:

κ ¼ hvðx‡Þi=2vth: ð3Þ
We evaluated κ from both the rates and the velocities.

First, the rates kF=U were determined from single-
exponential fits (Fig. S5) to the distributions of unfolded-
or folded-state lifetimes, as measured directly from the
extension trajectories by partitioning the trajectories into
the two states via thresholding [18], PF=U was found
from the fraction of time spent in each state, and Pðx‡Þ
was evaluated from the free-energy landscape via

Pðx‡Þ ¼ A expð−βΔG‡Þ, where A is the normalization
constant ensuring

R
PðxÞdx ¼ 1. The thermal velocity

was calculated (Table S1) by estimating m as the mass
of the part of the hairpin remaining unfolded when the
barrier was crossed at x‡ [20]. The TST rates implied by
Eq. (2) were found to be much higher than the rate observed
directly in the extension trajectories for every hairpin
(Table S1), by a factor of roughly 100 000-fold, yielding
κ ∼ 10−5 (Table II). The values for κ obtained independ-
ently from the velocities via Eq. (3) were in excellent
agreement with those found from the rates (Table II).
These results indicate that barrier recrossing plays a

central role in folding transitions, reducing rates by ∼5
orders of magnitude. Classical transition-state theory
thus does not provide a good description of folding and
using it to estimate kinetic prefactors or activation energies
as sometimes done [40] will lead to substantial overvalu-
ation. Instead, diffusive theories like Kramers’ approach
or its generalizations [30] are more appropriate. In fact, κ
can be evaluated directly from Kramers’ theory as κ ¼
ðmκbÞ½βD [30]. Using the average values of D from
Table I, we obtained very similar values for κ as found
from the rates and velocities (Table II). Although it has
previously been shown that Kramers’ theory accounts well
for the observed kinetics in both simulations [41–43] and
experiments [8,44,45], the transmission factor reflecting
the influence of barrier recrossing has not previously been
measured.
More generally, this study of the velocity in transition

paths highlights how well the diffusive model of folding
reactions works to describe and predict folding phenomena.
Remarkable quantitative consistency is seen across a
wide range of experimental observables at various scales.
Analyzing different kinetic properties of folding, for
example, leads to consistent values for the diffusion
coefficient whether looking at rates [11], the much-smaller
transition times [12,13], or the speed of motion along the
transition paths. The statistics of transition-path occupancy
also quantitatively match what is expected for diffusive
motions over the energy landscape [37,46], whether recon-
structed under equilibrium or nonequilibrium conditions
[19,33,47]. Finally, kinetic models of unfolding-force

TABLE II. Comparison of κ from rates, velocities, and
Kramers’ theory. Errors represent standard deviation.

DNA
hairpin

κ from rates
(×10−6)

κ from
velocities
(×10−6)

κ from Kramers’
theory (×10−6)

30R50=T4 10� 4 10� 2 11� 2
20R100=T4 10� 1 9� 2 9� 1
20R55=T4 7� 1 7� 2 7� 2
20TS06=T4 4.4� 0.4 7� 3 7� 2
20R25=T4 5.4� 0.5 7� 2 7� 2
20R0=T4 0.9� 0.2 6� 2 5� 1
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distributions based on diffusive theories [48,49] not only
capture the shape of the distribution but also yield values
for the energy-barrier location and height that agree with
model-independent reconstructions of the landscapes
[8,19,33] as well as rate values that agree with those
measured directly [11]. This consistency across numerous
observables and many different types of measurement gives
strong confidence in the quantitative validity of the dif-
fusive picture of folding.
The measurements of local variations in the transitions

paths demonstrated here open many new possibilities for
studying folding. For example, variations in the velocity
should allow the local energy landscape roughness, reflect-
ing localized changes of internal friction in the molecule, to
be deduced. Cataloguing the different types of transition-
path shapes observed should also allow the identification
and characterization of different classes of transition paths
crossing different barriers, probing directly the competition
between pathways that underlies the statistical view of
folding. Transition-path studies promise to be an exciting
new frontier in the science of folding.
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