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We study a 2D exchange model with a weak static random field on lattices containing over 108 spins.
Ferromagnetic correlations persist on the Imry-Ma scale inversely proportional to the random-field strength
and decay exponentially at greater distances. We find that the average energy of the correlated area is close
to the ground-state energy of a Skyrmion, while the topological charge of the area is close to �1. The
correlation function of the topological charge density changes sign at a distance determined by the
ferromagnetic correlation length, while its Fourier transform exhibits a maximum. These findings suggest
that static randomness transforms a 2D ferromagnetic state into a Skyrmion–anti-Skyrmion glass.
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Studies of static randomness in field-theory models have
a long history. They apply to amorphous magnets and spin
glasses [1–4], flux lattices in superconductors [5–9],
magnetic bubble and Skyrmion lattices [10–12], charge
density waves [13–17], liquid crystals and polymer physics
[18,19], and He-3 in aerogel [20,21]. It has been long
understood that the effect of a static random field (RF) on
the long-range order is stronger than the effect of thermal
fluctuations. In 1975 Imry and Ma (IM) made a general
observation [22] that static randomness, no matter how
weak, destroys the long-range order in less than d ¼ 4
dimensions in systems with continuous-symmetry order
parameter. According to the IM argument, the correlated
area scales asH2=ðd−4Þ

R with the strengthHR of the RF. Such
correlated regions received the name of IM domains. While
this concept was widely used by the experimentalists in
application to various physical systems, it was later
questioned by theorists [23–32] who applied the renorm-
alization group, variational, and replica-symmetry breaking
methods to the problem. They argued that static random-
ness must lead to a defect-free Bragg glass characterized by
only a power-law decay of correlations. More recent large-
scale numerical simulations of RF systems, accompanied
by analytical work [33], have shown that exponential decay
of correlations does occur in the absence of topological
defects. In, e.g., spin systems with n spin components this
requires n > dþ 1. All problems of practical interest,
however, correspond to n ≤ dþ 1, when topological
defects are present. For such problems the dispute about
the nature of the glass state created by static randomness
has never been settled.
In this Letter we study the borderline case, n ¼ dþ 1, of

a three-component spin field in two dimensions. It pos-
sesses nonsingular topological objects, Skyrmions [34], as
compared to singular objects for n < dþ 1 (e.g., vortices
in 2D and 3D XY models). The absence of the Bragg glass

in two dimensions was first noticed by Fisher and co-
workers [35] who argued that a pinned elastic medium
would be unstable to dislocations. A similar argument
exists for a 2D ferromagnet. The scale invariance of the
pure continuous exchange model in two dimensions makes
the ground-state energy of the Skyrmion 4πJ (with J being
the exchange constant) independent of the Skyrmion size λ.
In a crystal lattice, violation of the scale invariance by the
finite atomic spacing a adds the term proportional to
−Jða=λÞ2 to the energy of the Skyrmion, forcing it to
collapse [36]. This changes in the presence of the RF.
Fluctuations of the RF make the energy of its interaction
with the Skyrmion scale as −HRðλ=aÞ [37], thus forcing
sufficiently large Skyrmions to blow up rather than col-
lapse. As we shall see, however, in the absence of the
external field, the ferromagnetic order that is needed for the
Skyrmions to exist, in accordance with the IM argument, is
limited to areas of size Rf ∝ 1=HR. It is therefore plausible
that IM domains in a 2D RF system are made by Skyrmions
and anti-Skyrmions of average size, λ ∼ Rf. In what
follows we will provide quantitative support to this picture
by studying the topological structure of the disordered state
on lattices containing over 108 spins.
The model is described by the Hamiltonian

H ¼ −
J
2

X

hiji
σi · σj −

X

i

σi ·HRi ð1Þ

¼
Z

d2r

�
α

2

�∂Sb
∂rβ

�
2

− S ·HR

�
: ð2Þ

The first formula corresponds to the discrete lattice version
of the model, with σi being the spin at the ith lattice site,
and hiji meaning summation over the nearest neighbors.
The second formula provides the continuous field-theory
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counterpart of the model, with α being the exchange
stiffness, index b ¼ 1, 2, 3 indicating the components of
the spin field Sðx; yÞ of constant length S0, and index
β ¼ x, y indicating the components of the radius vector in
the xy plane. The RF is oriented randomly at each lattice
site. Our conclusions do not depend on whether it has a
constant magnitudeHR at each site or is distributed with the
HR average. The discrete and continuous models are related
according to

P
i ¼

R
d2r=a2, σi ¼ a2SðriÞ, α ¼ Ja4.

Mapping of the unit sphere represented by sðx; yÞ ¼
Sðx; yÞ=S0 onto the xy coordinate plane generates
classes of homotopy [38] that describe Skyrmions and
anti-Skyrmions of quantized topological charge Q ¼ 0;
�1;�2;…, given by

Q ¼
Z

d2r
8π

ϵαβsaϵabc
∂sb
∂rα

∂sc
∂rβ ¼

Z
dxdy
4π

s ·
∂s
∂x ×

∂s
∂y :

ð3Þ
The quantity qðrÞ ¼ 1

4π s · ð∂s=∂x × ∂s=∂yÞ under the inte-
gral has the meaning of the topological charge density
(TCD). We are interested in the spin-spin correlation
function (CF), hsðr1Þ · sðr2Þi, and the CF of the TCD,
hqðr1Þqðr2Þi, defined in a standard way as the average
over pairs of points separated by the same distance
R ¼ jr1 − r2j. The spin-spin CF has been intensively
studied for RF systems in the past while the TCD CF
received little attention. As we shall see, it sheds a new light
on the structure of the disordered state.
In the numerical work we use periodic boundary con-

ditions and a collinear initial condition (CIC) for the
spins. The latter corresponds to all spins initially aligned
in one direction, which would be the ground state in the
absence of the RF. The system prepared with the CIC is
allowed to evolve to a minimum energy state in the
presence of the RF whose direction is chosen randomly
at each lattice site. Our numerical method searches for the
energy minimum by combining sequential rotations of the
spins towards the direction of the local effective field,
Hi;eff ¼ −δH=δσi, with the energy-conserving spin flips,
σi → 2ðσi ·Hi;effÞHi;eff=H2

i;eff − σi. The two are applied
with probabilities γ and 1 − γ, respectively, with γ playing
the role of the relaxation constant. The method has high
efficiency for glassy systems under the condition γ ≪ 1
[33]. The largest-scale computation has been done on a
square lattice containing 10240 × 10240 spins. In numeri-
cal work we used J ¼ 1 and jσij ¼ 1, with all results easily
rescaled for arbitrary J and jσij.
Numerically obtained real-space spin-spin and TCD CFs

versus R ¼ jr1 − r2j are shown in the upper panel of Fig. 1
for two values of HR. The TCD CF drops much faster than
the spin-spin CF. A more careful analysis (see below)
shows that it changes sign at R ≈ Rf and then oscillates on
increasing R. Values of the ferromagnetic correlation length
Rf that appear in the upper panel of Fig. 1 are taken from

the theoretical formula derived below. They provide a good
fit of the short-range behavior of the CF shown in the lower
panel of Fig. 1.
While the system is highly nonlinear, it is instructive to

compare the numerical results with the analytical results
for the spin-spin CF that can be obtained if one ignores
topological defects. One such possibility is presented by
the 2D mean-spherical model in which the spin field SðrÞ
is allowed to have an arbitrary length while satisfying an
integral condition hS2i ¼ S20. It is statistically equivalent
to the spin field with an infinite number of spin
components [39], in which case (n > dþ 1) the topo-
logical objects are absent [33]. Adding the term
−Λ

R
d2rS2 with the Lagrange multiplier Λ≡ −αkf=2

to the Hamiltonian one obtains the following equation for
the spin field: ð∇2 − k2fÞS ¼ −HR=α. Its solution is
SðrÞ ¼ −α−1

R
d2r0Gðr − r0ÞHRðr0Þ, where GðrÞ is the

Green function of the differential equation for S, having
a Fourier transform GðkÞ ¼ −1=ðk2 þ k2fÞ. Writing for

FIG. 1. Upper panel: Spin-spin (blue lines) and TCD (red lines)
CFs for two values of the random field, computed with the CIC
on a square lattice 10240 × 10240. Lower panel: Short-range
behavior of the spin-spin CF.
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the RF hHRiðr0ÞHRjðr00Þi ¼ 1
3
H2

Ra
2δijδðjr0 − r00jÞ, one gets

for s ¼ S=S0

hsðr1Þ · sðr2Þi¼ ðkfRÞK1ðkfRÞ; kfa¼
HR

2
ffiffiffi
π

p
Js

; ð4Þ

where kf was obtained from the condition hs2i ¼ 1. Here,
K1ðxÞ is a modified Bessel function having asymptotes
K1ðxÞ → 1=x at x → 0 and K1ðxÞ → ðπ=2xÞ1=2 expð−xÞ
at x ≫ 1. We define the ferromagnetic correlation length
as Rf ≡ 1=kf. A more accurate expansion at short
distances, R ≪ Rf, is

hsðr1Þ · sðr2Þi → 1 − ½R=ð2RfÞ�2 lnð2Rf=RÞ: ð5Þ

In that limit, however, one can develop a more rigorous
approach that agrees with numerics quantitatively. The
exact equation for sðrÞ is

α∇2s − αsðs · ∇2sÞ þHR − sðs ·HRÞ ¼ 0: ð6Þ
At short distances, starting with s ¼ s0 at a certain point
and writing s ¼ s0 þ δs in the vicinity of that point, it is
easy to see that, due to the nonsingular nature of
Skyrmions, a weak rotation of s always provides a δs
smallness of s · ∇2s ¼ −ð∇δsÞ2 as compared to ∇2s ¼
∇2δs. This allows one to neglect the second term in
Eq. (6), reducing it to α∇2s ¼ −Hþ sðs ·HRÞ that can
be written in the integral form sðrÞ ¼ −α−1

R
d2r0Gðr−

r0Þgðr0Þ, with the Fourier transform of GðrÞ being −1=k2
and g ¼ HR − sðs ·HRÞ. At this point the CF at short
distances can be computed for any n-component spin.
Noticing that hgðr0Þ · gðr00Þi ¼ H2

Rð1 − 1=nÞa2δðr0 − r00Þ,
one obtains Eq. (5) but with a different Rf:

Rf

a
¼ 2

�
π

1 − 1=n

�
1=2 Js

HR
: ð7Þ

As expected, at n ¼ ∞ it yields Rf of the 2D mean-
spherical model, while at n ¼ 3 a slightly different result
follows: Rf ¼ ð6πÞ1=2ðJs=HRÞ. It gives Rf=a ≈ 43.4 for
HR ¼ 0.1 and Rf ≈ 145 for HR ¼ 0.003, which agrees
remarkably with the numerical fit at short distances. At
large distances the spin-spin CF exhibits some kind of
exponential decay with Rf ∝ 1=HR, although its exact
analytical form remains unknown. For, e.g., HR ¼ 0.1,
the CF decreases in half at R=a ¼ 52.
We now focus our attention on the TCD CF. Its behavior

is shown in the upper panel of Fig. 2. For, e.g.,HR ¼ 0.1, it
crosses zero at R=a ≈ 46, which is pretty close to Rf
obtained for the spin-spin CF. Since the latter provides the
average size of the region where the spins are ferromagneti-
cally correlated, it shows some kind of the oscillating
topological order associated with the IM domains:
Domains with a positive topological charge are surrounded
by domains with a negative topological charge. The latter is

illustrated by the plot of the TCD shown in the lower panel
of Fig. 2. These results hint that the correlated regions could
be formed by coupled Skyrmions and anti-Skyrmions
deformed by their interaction and by the RF energy
landscape.
Further evidence of the topological order associated with

the IM domains comes from the Fourier transform of the
TCD CF shown in Fig. 3. It exhibits a maximum at
kRf ¼ 1, thus confirming the oscillating structure of the
TCD. To relate the observed oscillations of the TCD to
Skyrmions one can estimate the absolute value of the
topological charge of the correlated area as QCA ¼
ð2Rf=LÞ2

R
d2rjqj, where L × L is the total area of the

2D system. At HR ¼ 0.1 this gives QCA ¼ 0.948 for
Rf=a ¼ 43.4 (the short-range result for the spin-spin
CF) and QCA ¼ 1.065 for Rf=a ¼ 46 (the first zero of

FIG. 2. Upper panel: TCD CF averaged over realizations of the
RF. Lower panel: TCD color plot. Red (blue) shows positive
(negative) sign of the TCD while the density of the color shows
the magnitude of the TCD. Solid lines are guides for the eye to
see the grainy structure of the topological charge associated with
IM domains.
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the TCD CF). Both values of QCA are pretty close to the
Skyrmion charge Q ¼ 1. The exchange energy of the
correlated area coincides with the ground-state energy of
the Skyrmion 4πJ up to a factor of order unity.
In this Letter we have studied topological properties of

the glassy state in a generic RF 2D exchange model. It can
be easily generalized to take into account many other
effects that exist in real magnetic films. This includes, e.g.,
the effects of the crystal field [40] and random magnetic
anisotropy [37] on Skyrmions. Strong anisotropy leads to a
more significant metastability [41] than the RF of a
comparable magnitude. The latter can be generated by,
e.g., exchange interaction with magnetic impurities [17]. In
a 2D Heisenberg model (n ¼ dþ 1), it provides a very
narrow hysteresis loop [33], that is, weak metastability.
This makes our results weakly dependent on the initial
conditions. Other interactions usually studied in the context
of 2D spins include Dzyaloshinskii-Moriya [42–44] and
spin-lattice interactions, as well as coupling to nonmagnetic
defects. Since these interactions contain spatial derivatives
of the spin and phonon displacement fields, they generally

could not compete with the disordering effect of the RF at
large distances (small k), although the corresponding
correlation functions would depend on more parameters.
Dzyaloshinskii-Moriya interaction, for example, can inject
chirality into the problem along with the TCD.
In conclusion, we have provided evidence that a static

random field in the generic 2D exchange model transforms
the ordered state into a Skyrmon–anti-Skyrmion glass.
Experimental detection of the topological order requires
accurate mapping of the directions of spins in large areas. It
could be worth the effort because it would help to solve the
fundamental problem of the nature of the glass state in
systems with nontrivial topology. Recent experiments on
Skyrmions in disordered films with ferromagnetic
exchange [45,46] make the first step in that direction.

This work has been supported by Grant No. DE-FG02-
93ER45487 funded by the U.S. Department of Energy,
Office of Science.
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