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We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-
dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and
a dissipative dynamics for this collective excitation. While the dissipative part accounts for the collectively
enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom
numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the
intrinsic dephasing for such a collective excitation, a setup is presented where the universal dynamics can
be explored.
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The collective interaction between an ensemble of
emitters and photons is at the heart of many fascinating
phenomena in quantum optics [1,2]. For a single coherent
excitation of such an ensemble, the direction and the rate
of spontaneous emission are strongly modified and can
either be enhanced or suppressed, which has recently been
experimentally observed [3,4]. For these effects to be
observable, it is crucial that the coherence between the
atoms within the ensemble is maintained. While the
influence of the thermal motion of atoms has been inves-
tigated [5], an ensemble of atoms with a single excitation
also exhibits an interaction induced by the virtual exchange
of photons [6], which might provide an intrinsic dephasing
inherent to any ensemble of emitters. In this Letter, we
study within a microscopic analysis whether there is a
fundamental limit on this intrinsic dephasing.
Signatures of the coherent interaction by a virtual

exchange of photons in an ensemble of atoms with several
excitations have been discussed in terms of a collective Lamb
shift [6,7], and they have been observed in various physical
systems ranging from an ensemble of nuclei [8] over solid-
state systems [9,10] to ions [11] and atoms [12,13]. On the
theoretical side, recent research has focused on the under-
standing of the transmission of photons and the appearance
of correlations in one-dimensional waveguides [14–19], as
well as the appearance of superradiance and a collective
Lamb shift in the single-excitation manifold [20–25]. In
order to guarantee a single excitation in an ensemble of
scatterers, the notion of a superatom has emerged as a
powerful concept, where a strong interaction between the
excited states restricts suppressed multiple excitations in the
ensemble and is conveniently realized with Rydberg atoms
[26–33].
Here, we study the influence of the virtual exchange of

photons on the properties of such a single collective

excitation, focusing on a setup described by an ensemble
of atoms coupled to a one-dimensional waveguide (see
Fig. 1). Based on a microscopic analysis, the time evolution
of the collective excited state is governed by two competing
terms: first, the spontaneous and strongly directed emission
into the waveguide, and second, an intrinsic coherent
exchange interaction. Remarkably, we find that the coher-
ent part gives rise to a universal dynamics of the collective
excitation for increasing particle numbers, and it exhibits
several revivals and eventually saturates at a universal
value. While this phenomenon provides an intrinsic limit
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FIG. 1. (a) Two-level atoms coupled to a one-dimensional
waveguide with left- and right-moving modes. (b) After integrat-
ing out the photonic degrees of freedom, the system exhibits
spontaneous emission and an infinite-ranged exchange interac-
tion between the atoms. (c) In the presence of a blockade
mechanism, the superatom state jWi is collectively coupled to
the ground state with the coupling strength

ffiffiffiffiffiffi
Nγ

p
giving rise to an

enhanced spontaneous emission Nγ into the forward direction,
while the coherent exchange interaction leads to a coupling
between this bright state and the manifold of dark states.
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on the dephasing in a superatom, we also present a setup
where the universal dynamics can be explored.
Each atom is well-described by a two-level system with

the ground state jgi and the excited state jei (see Fig. 1). The
optical transition frequency between the two states is given
byω0 ¼ 2πc=λ, with thewavelength λ and the corresponding
wave vector k ¼ 2π=λ. In the following, we describe the two
states of an atomat position x by the field operatorsψgðxÞ and
ψeðxÞ for thegroundandexcited state, respectively. Then, the
initial statewith allN atoms in theground state takes the form
jGi ¼ ffiffiffiffiffiffiffiffiffiffiffi

1=N!
p Q

N
i¼1 ψ

†
gðxiÞj0i. The atomic positions xi are

randomly distributed with a distribution function giving
rise to the averaged atomic ground state density nðxÞ ¼
hGjψ†

gðxÞψgðxÞjGidis; here, h� � �idis denotes the ensemble
average over many experimental realizations. Furthermore,
we introduce the operators SþðxÞ ¼ ψ†

eðxÞψgðxÞ creating an
excitation from the ground state to the excited state and
S−ðxÞ ¼ ψ†

gðxÞψeðxÞ for a transition from the excited state to
the ground state. These operators satisfy the relation

½SþðxÞ; S−ðyÞ� ¼ δðx − yÞ½n̂gðxÞ − n̂eðxÞ�; ð1Þ
with n̂νðxÞ ¼ ψ†

νðxÞψνðxÞ for ν ∈ fg; eg. Then, the micro-
scopic Hamiltonian describing the coupling of the atoms to a
one-dimensional waveguide within the rotating-wave
approximation takes the form

H ¼
Z

dq
2π

ℏωqa
†
qaq þ ℏω0

Z
dxψ†

eðxÞψeðxÞ

− ℏ
ffiffiffi
γ

p Z
dx½E†ðxÞS−ðxÞ þ SþðxÞEðxÞ�; ð2Þ

where
ffiffiffi
γ

p
characterizes the effective mode coupling giving

rise to the rate γ for spontaneous emission of a left- or right-
moving photon in the waveguide [14–19]. Furthermore, the
electric field operator within the waveguide reduces to

E†ðxÞ ¼ −i
ffiffiffi
c

p Z
dq
2π

a†qe−iqx: ð3Þ

The bosonic operators a†q account for the creation of a
waveguide mode with momentum q, while ωq ¼ cjqj
denotes the dispersion relation for the relevant photonmodes.
Starting from the microscopic Hamiltonian (2) and

integrating out the electric field, the effective dynamics
for the atoms alone is governed by a master equation
[6,14,34] and takes the form

∂tρ ¼ −
i
ℏ
½Hs; ρ� þDF½ρ� þDB½ρ�: ð4Þ

The first term describes a coherent interaction between the
atoms by the exchange of virtual photons,

Hs ¼ ℏγ
Z

dxdy sinðkjx − yjÞSþðxÞS−ðyÞ: ð5Þ

The term DF (DB) describes the spontaneous emission of a
photon in the forward (backward) propagating mode,
respectively.

In the following, the main analysis focuses on the
superatom state

jWi ¼ 1ffiffiffiffi
N

p
Z

dxeikxSþðxÞjGi; ð6Þ

which couples to the incoming light field with the collec-
tively enhanced coupling strength

ffiffiffiffiffiffi
Nγ

p
. In addition, there

are N − 1 “dark” states jDni ¼
R
dxDnðxÞSþðxÞjGi, with

the wave functions DnðxÞ defined by the orthogonality
conditions hWjDni ¼ 0 and hDmjDni ¼ δnm.
First, we study the coherent dynamics of the state jWi

under the Hamiltonian Hs alone. This Hamilton gives rise
to a coupling between jWi and the dark states jDni.
Therefore, the quantity of interest is the probability PðtÞ
to stay in the superatom state jWi under the coherent time
evolution after averaging over many experimental realiza-
tions, i.e., PðtÞ ¼ hjhWje−iHsℏtjWij2idis. This probability
can be evaluated numerically using exact diagonalization
and averaging over different disorder realizations, and it is
shown in Fig. 2. Remarkably, the dynamics features robust
revivals on the characteristic time scale τ ¼ π=Nγ, which
only damp out on the slower time scale τdp ¼

ffiffiffiffi
N

p
τ.

Therefore, for increasing particle numbers, the amount
of observable coherent oscillations increases. Finally, PðtÞ
saturates at a finite value ∼1=6 for long times t ≫ τdp.
Note that, in Fig. 2 we chose a Gaussian density distribu-
tion nðxÞ ¼ N expð−x2=σ2Þ=

ffiffiffiffiffiffiffiffi
πσ2

p
; however, the above

observations are independent of the atomic density profile
as long as the atomic cloud is smooth on distances
comparable to the optical wave length λ.
In the following, we provide an analytical analysis of this

universal dynamics for the superatom state jWi. It turns out
to be convenient to split the Hamiltonian Hs ¼ HF þHB
into two parts, where HF (HB) describes the virtual

(a) (b)

(c) (d)

FIG. 2. Time evolution of the state jWi under the Hamiltonian
Hs for (a) N ¼ 100, (b) N ¼ 500, (c) N ¼ 1000, and
(d) N ¼ 5000 particles after averaging over 105 realizations with
a Gaussian distribution and kσ ¼ 100. The gray curve indicates
the universal dynamics given by Eq. (9).

PHYSICAL REVIEW LETTERS 121, 013601 (2018)

013601-2



exchange of forward (backward) propagating photons,
respectively. The part describing interaction between the
atoms due to forward propagating photons is given by

HF ¼ ℏγ
2i

Z
dxdy sgnðx − yÞeikðx−yÞSþðxÞS−ðyÞ; ð7Þ

and analogously for HB. These Hamiltonians are exactly
solvable [34] and the spectrum takes the form Eα ¼
ðℏγ=2Þcotðαπ=2NÞ with α an odd integer and −N ≤
α < N. Furthermore, the eigenstates are

jα; Fi ¼ 1ffiffiffiffi
N

p
Z

dxeikxSþðxÞ exp
�
−i

πα

N
FðxÞ

�
jGi; ð8Þ

with the operator FðxÞ ¼ R
x
−∞ dzn̂gðzÞ counting the number

of ground state atoms on the left of position x; similar
for jα; Bi.
For a large atom number N ≫ 1, only states with jαj ≪

N have significant overlap with the superatom state with
jWi ¼ −

P
α2=ðπαÞjα; Fi and the energies reduce to

Eα ¼ Nℏγ=πα. As a result, the probability to remain in
the bright state, given only the forward propagating part of
the Hamiltonian, is given by ½χðt=τÞ�2 with τ ¼ π=Nγ and

χðsÞ ¼ 8

π2
X∞
n¼0

1

ð1þ 2nÞ2 cos
�

s
1þ 2n

�
: ð9Þ

It is this universal function that PðtÞ approaches for an
increasing number of atoms (see Fig. 2). In order to
understand this observation, there are two important points
to notice: First, only those states jα; Fi with small values of
jαj have a significant overlap with jWi. In addition, these
states dominate the fast dynamical behavior with the
characteristic energy scale E1 ¼ ℏγN=π. It is therefore
sufficient to restrict the analysis to low values of jαj.
Second, the states jα;Fi with low values of jαj become
exact eigenstates of the full Hamiltonian Hs, with energy
Eα in the limit of a large particle number N → ∞ and a
smooth atomic density distribution with σ ≫ λ. Then, the
universal dynamics PðtÞ ¼ ½χðt=τÞ�2 is the asymptotic
dynamical behavior for large particle numbers. Note that
the precise condition of low values of α reduces to jαj <
σ=λ as shown below.
In order to prove the statement that the states jα; F=Bi

with low values of α become exact eigenstates in the limit
N → ∞ and λ=σ → 0, we analyze the wave function
overlap between eigenstates of HF with the eigenstates
of HB, i.e., hαβ ¼ hβ; BjHBjα; Fi=E0 ¼ hβ; Bjα; Fi=β, and
the matrix element δα ¼ hα; FjHBjα; Fi=E1. These dimen-
sionless parameters take the form

hαβ ¼
1

β

Z
dx
N

e2ikxhGjn̂gðxÞe−i½πðαþβÞ=N�FðxÞjGi; ð10Þ

δα ¼
Z

dxdy
2iN2

sgnðx − yÞe2ikðx−yÞ

× hGjn̂gðxÞn̂gðyÞe−iðπα=NÞðFðxÞ−FðyÞÞjGi: ð11Þ
In the limit N → ∞, we can replace the atomic density
operator by its averaged expectation value nðxÞ as the
fluctuations in the density vanish with 1=

ffiffiffiffi
N

p
. Then, the

overlaps in hαβ reduce to the Fourier transformation of a
smoothly varying function. Therefore, the overlap between
states with low numbers of α, β, i.e., 2jkj ≫ πjαþ βj=σ,
vanishes for λ=σ → 0; here, σ denotes the characteristic size
of the atomic cloud in general. For example, it vanishes
exponentially for a Gaussian density distribution, while for
a stepwise atomic distribution, it vanishes as ðλ=σÞ2. On the
other hand, overlaps with jβj≳ σ=λ are suppressed by the
factor 1=β in Eq. (10). Similarly, the expression for δα
reduces to δα ¼ c0ðλ=σÞ þ c1αðλ2=σ2Þ þO(ðλ=σÞ3), with
dimensionless parameters c0 and c1 of order unity, which
only depend on the atomic density distribution nðxÞ. The
first term is an irrelevant shift in energy, while the second
correction again vanishes as ðλ=σÞ2. In conclusion, we have
demonstrated that the eigenstates jα; Fi with energy Eα
become exact eigenstates of the full Hamiltonian Hs for
jαj < σ=λ in the limit N → ∞ and λ=σ → 0.
Next, we analyze the leading correction due to a finite

number of particles N in the regime λ ≪ σ. The main
influence are deviations from the mean density distribu-
tion nðxÞ due to the random distribution of the particles
within each experimental realization. These fluctuations
lead to fluctuations of hαβ and δα. We illustrate this
behavior for the overlap wα ¼ hα; Bjα; Fi. The important
quantity is the variance of these fluctuations, i.e., Δwα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjwαj2idis − hjwαji2dis

p
, and its leading contribution takes

the form Δwα ¼ 1=
ffiffiffiffi
N

p
. This result is derived using the

general relation

hn̂gðxÞn̂gðyÞidis ¼
N − 1

N
nðxÞnðyÞ þ nðxÞδðx − yÞ; ð12Þ

valid for a thermal gas on distances studied in the present
setup. Furthermore, the full distribution function for jwαj2
can be derived (See Supplemental Material [34]), which
leads to an exponential distribution with a mean value 1=N.
The last step to understand the behavior of PðtÞ is to

derive the leading correction to the energies Eα using
perturbation theory in the small parameter wα,

E�
α

Eα
¼ 1� jwαj with jα;�i ¼ 1ffiffiffi

2
p ðjα; Fi � eiϕα jα; BiÞ

and wα ¼ jwαjeiϕα . Therefore, the relevant energies of the
Hamiltonian Hs fluctuate within each experimental reali-
zation, with a variance ΔEα ¼ Eα=

ffiffiffiffi
N

p
giving rise to a

characteristic dephasing rate τdp ¼ π=
ffiffiffiffi
N

p
γ. This observa-

tion allows us to derive the leading dynamical behavior
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PðtÞ for the superatom states jWi by performing the
average over many different experimental realizations
using the knowledge on the distribution function of jwαj2,

PðtÞ ¼
�
8

π2
X

n≥0
2

ð2nþ 1Þ2 cos
�

t=τ
2nþ 1

�

×

�
1 − 2f

�
t

2τdpð2nþ 1Þ
���

2

−
16

π4
X
n≥0

�
2

ð2nþ 1Þ4
��

1 − 2f

�
t

2τdpð2nþ 1Þ
��

2

−
�
1 − f

�
t

τdpð2nþ 1Þ
����

; ð13Þ

with fðxÞ ¼ xDðxÞ and the Dawson function DðxÞ ¼
e−x

2 R x
0 dte

t2 with the asymptotic limit fðx → ∞Þ ¼ 1=2.
The first term in Eq. (13) is a modification of the universal
function [Eq. (9)], which now includes damping on a time
scale τdp. For long times t ≫ τdp, the dynamics saturates at

PðtÞ→
t≫τdp

X∞
n¼0

�
2

πð2nþ 1Þ
�

4

¼ 1

6
: ð14Þ

In Fig. 3, we compare the numerically calculated PðtÞ for
N ¼ 1000 averaged over 105 realizations, with a Gaussian
density distribution and kσ ¼ 100, and PðtÞ given in
Eq. (13), and we find an excellent agreement.
Finally, we analyze the dissipative dynamics. The

collective enhancement of the coupling between the for-
ward propagating waveguide mode and the jWi state also
implies an enhanced spontaneous emission rate ΓF ¼ Nγ
into the forward direction. In turn, the spontaneous

emission into the backward propagating mode, ΓB, depends
on the details of the atomic distribution within each
experimental realization. In the case of a smooth atomic
distribution whose characteristic length scale σ is much
larger than the optical wave length λ, the decay rate
averaged over many realizations reduces to ΓB ≈ γ, and
it accounts for the spontaneous emission of a single atom.
It is important to point out that the characteristic time scale

for the revivals in the coherent dynamics and the dissipative
part are of the same order. On one hand, we conclude that the
coherent part always provides an intrinsic contribution to
the dephasing of a superatom state. On the other hand, it is
important to disentangle the dissipative dynamics and the
coherent part for the experimental observation of the revivals.
This goal can be achieved by quenching the spontaneous
emission by tailoring the waveguide.
This approach is described in the following for an

experimentally realistic setup. Such a setup exhibits in
addition to the coupling to the waveguide naturally also a
spontaneous emission into free space with rate γ0. As a first
requirement, this decay must be comparable or smaller than
the decay into the waveguide, i.e., γ ≳ γ0, which can be
achieved in current experimental setups [17,35]. Then, the
coherent dynamics, as well as the dephasing, are collec-
tively enhanced and appear on a time scale much faster
than residual losses, Nγ ≫

ffiffiffiffi
N

p
γ ≫ γ0. Second, the initial

preparation of the setup into the superatom state jWi is
achieved using a π pulse with a fast time scale compared to
the characteristic dynamics τ. As the Rabi frequency is also
collectively enhanced, this condition reduces to Ω ≫ γ

ffiffiffiffi
N

p
,

with the single atom Rabi frequency Ω. To bring out the
effect of the coherent dynamics, we propose an experi-
mental setup, where the atoms are coupled to a one-
dimensional photonic crystal, or Bragg grating, such that
the emission process is strongly suppressed due to the
opening of a band gap, while the virtual photons mediating
the exchange interaction can still propagate outside the
photonic band gap. In order to satisfy this condition, the
size of the photonic band gapΔ is required to be in the range
ΓF ≪ Δ ≪ 2πc=σ, where σ is the characteristic size of the
system.The lower bound results from the fact that the emitted
photon has a Lorentzian spectrum. The upper bound derives
from the condition that the virtual photons should be able to
propagate with a linear dispersion, such that the initial form
of the exchange Hamiltonian is unaffected. For typical
quantum optics experiments, the system size is in the
micrometer regime which relates to a mode spacing of the
virtual photons of a few THz. In addition, the decay into
the waveguide is typically in the range of MHz, providing
the enhanced decay rate ΓF ¼ Nγ in the lower GHz regime
for N ∼ 104 atoms. This requires the width of the gap to be
of the size of a few ten to hundred GHz. Such gratings have
been produced, for example, in germanosilicate optical fibers
[36], and they have been specifically designed for quantum
optics experiments [37].

FIG. 3. Comparison between the numerically and analytically
calculated time evolution of jWi under Hs. Blue (dashed) curve:
Numerically calculated time evolution for N ¼ 1000 particles
averaged over 105 realizations with a Gaussian distribution and
kσ ¼ 100. Orange (solid) curve: Analytical prediction for λ=σ ≪
1 and large N. (Inset:) Zoomed image of the dynamics for a better
comparison between the numerically and analytically calculated
time evolution. Note that there is hardly any visible difference.
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In conclusion, we demonstrated that the nonequilibrium
dynamics of a quantum many-body system, consisting of
atoms coupled to a one-dimensional waveguide, can exhibit
highly nontrivial universal dynamics characterized by
revivals and eventually a saturation on 1=6. This observa-
tion is independent on the averaged atomic distribution
nðxÞ, and it becomes more pronounced for increasing
particle numbers. In the present analysis, we chose a fixed
number of atoms within each experimental realization.
However, it is straightforward to derive that for a Poisson
distributed number of atoms, the only modification in the
dynamics is the enhancement of the dephasing rate by a
factor

ffiffiffi
2

p
, while the revivals and the saturation remain

unaffected. We expect that similar phenomena can also
appear in free space for two-level systems strongly coupled
to a single highly focused light mode.
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