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Emergent Universal Dynamics for an Atomic Cloud Coupled to an Optical Waveguide
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We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-
dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and
a dissipative dynamics for this collective excitation. While the dissipative part accounts for the collectively
enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom
numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the
intrinsic dephasing for such a collective excitation, a setup is presented where the universal dynamics can

be explored.
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The collective interaction between an ensemble of
emitters and photons is at the heart of many fascinating
phenomena in quantum optics [1,2]. For a single coherent
excitation of such an ensemble, the direction and the rate
of spontaneous emission are strongly modified and can
either be enhanced or suppressed, which has recently been
experimentally observed [3,4]. For these effects to be
observable, it is crucial that the coherence between the
atoms within the ensemble is maintained. While the
influence of the thermal motion of atoms has been inves-
tigated [5], an ensemble of atoms with a single excitation
also exhibits an interaction induced by the virtual exchange
of photons [6], which might provide an intrinsic dephasing
inherent to any ensemble of emitters. In this Letter, we
study within a microscopic analysis whether there is a
fundamental limit on this intrinsic dephasing.

Signatures of the coherent interaction by a virtual
exchange of photons in an ensemble of atoms with several
excitations have been discussed in terms of a collective Lamb
shift [6,7], and they have been observed in various physical
systems ranging from an ensemble of nuclei [8] over solid-
state systems [9,10] to ions [11] and atoms [12,13]. On the
theoretical side, recent research has focused on the under-
standing of the transmission of photons and the appearance
of correlations in one-dimensional waveguides [14—-19], as
well as the appearance of superradiance and a collective
Lamb shift in the single-excitation manifold [20-25]. In
order to guarantee a single excitation in an ensemble of
scatterers, the notion of a superatom has emerged as a
powerful concept, where a strong interaction between the
excited states restricts suppressed multiple excitations in the
ensemble and is conveniently realized with Rydberg atoms
[26-33].

Here, we study the influence of the virtual exchange of
photons on the properties of such a single collective
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excitation, focusing on a setup described by an ensemble
of atoms coupled to a one-dimensional waveguide (see
Fig. 1). Based on a microscopic analysis, the time evolution
of the collective excited state is governed by two competing
terms: first, the spontaneous and strongly directed emission
into the waveguide, and second, an intrinsic coherent
exchange interaction. Remarkably, we find that the coher-
ent part gives rise to a universal dynamics of the collective
excitation for increasing particle numbers, and it exhibits
several revivals and eventually saturates at a universal
value. While this phenomenon provides an intrinsic limit

(@)

FIG. 1. (a) Two-level atoms coupled to a one-dimensional
waveguide with left- and right-moving modes. (b) After integrat-
ing out the photonic degrees of freedom, the system exhibits
spontaneous emission and an infinite-ranged exchange interac-
tion between the atoms. (c) In the presence of a blockade
mechanism, the superatom state |W) is collectively coupled to
the ground state with the coupling strength /Ny giving rise to an
enhanced spontaneous emission Ny into the forward direction,
while the coherent exchange interaction leads to a coupling
between this bright state and the manifold of dark states.
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on the dephasing in a superatom, we also present a setup
where the universal dynamics can be explored.

Each atom is well-described by a two-level system with
the ground state |g) and the excited state |e) (see Fig. 1). The
optical transition frequency between the two states is given
by wy, = 2xzc /A, with the wavelength A and the corresponding
wave vector k = 2z//. In the following, we describe the two
states of an atom at position x by the field operators y, (x) and
v, (x) for the ground and excited state, respectively. Then, the
initial state with all N atoms in the ground state takes the form

= /1/N!'TIY., wi(x;)|0). The atomic positions x; are
randomly distributed w1th a distribution function giving
rise to the averaged atomic ground state density n(x) =
(Glyd (x)w,(x)|G)gis; here, (--+)g, denotes the ensemble
average over many experimental realizations. Furthermore,
we introduce the operators S* (x) = { (x)y,(x) creating an
excitation from the ground state to the excited state and
S~(x) = yy (x)w.(x) for a transition from the excited state to
the ground state. These operators satisfy the relation

[$7(x), S~ (0)] = 6(x = y)[Ag(x) = Ac(x)], (1)

with 7,(x) =y} (x)w,(x) for v € {g, e}. Then, the micro-
scopic Hamiltonian describing the coupling of the atoms to a
one-dimensional waveguide within the rotating-wave
approximation takes the form

H= /@hwqa;gaq —l—ha)o/dxt//l'(x)l//e(x)
~hy7 [ WS + 5T WERL (@)

where , /y characterizes the effective mode coupling giving
rise to the rate y for spontaneous emission of a left- or right-
moving photon in the waveguide [14—19]. Furthermore, the
electric field operator within the waveguide reduces to

0 =-ive [ Sl )

The bosonic operators aq account for the creation of a
waveguide mode with momentum ¢, while w, = c|q|
denotes the dispersion relation for the relevant photon modes.

Starting from the microscopic Hamiltonian (2) and
integrating out the electric field, the effective dynamics
for the atoms alone is governed by a master equation
[6,14,34] and takes the form

L [H P DA+ Dyl @

The first term describes a coherent interaction between the
atoms by the exchange of virtual photons,

O =

H, = hy / dxdysin(k|x — y)S*(¥)S"(v). ()

The term Dr (Dp) describes the spontaneous emission of a
photon in the forward (backward) propagating mode,
respectively.

(@)

1.0 1.0
N =100 N =500
0.8 0.8
< 06 < 06
& 04 & 04
0.2 0.2
0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50
(C) o t/T (d) o t/T
I N = 1000 I N = 5000
0.8 0.8
< 06 < 06
& 04 & 04
0.2 0.2
0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50
t/T t/T

FIG. 2. Time evolution of the state |W) under the Hamiltonian
H; for (a) N =100, (b) N =500, (¢c) N =1000, and
(d) N = 5000 particles after averaging over 10° realizations with
a Gaussian distribution and ko = 100. The gray curve indicates
the universal dynamics given by Eq. (9).

In the following, the main analysis focuses on the
superatom state

W) :%ﬁ / dxeiS*(x)[G), ()

which couples to the incoming light field with the collec-
tively enhanced coupling strength /Ny. In addition, there
are N — 1 “dark” states |D,) = [dxD,(x)S"(x)|G), with
the wave functions D, (x) defined by the orthogonality
conditions (W|D,,) =0 and (D,,|D,) = 8-

First, we study the coherent dynamics of the state |W)
under the Hamiltonian H, alone. This Hamilton gives rise
to a coupling between |W) and the dark states |D,).
Therefore, the quantity of interest is the probability P(r)
to stay in the superatom state |W) under the coherent time
evolution after averaging over many experimental realiza-
tions, i.e., P(t) = (|(W|e7#H:|W)|?) 4. This probability
can be evaluated numerically using exact diagonalization
and averaging over different disorder realizations, and it is
shown in Fig. 2. Remarkably, the dynamics features robust
revivals on the characteristic time scale 7 = z/Ny, which
only damp out on the slower time scale 74, = V/Nz.
Therefore, for increasing particle numbers, the amount
of observable coherent oscillations increases. Finally, P(7)
saturates at a finite value ~1/6 for long times 7> 7g,.
Note that, in Fig. 2 we chose a Gaussian density distribu-

tion n(x) = Nexp(—x?/c%)/Vro?; however, the above
observations are independent of the atomic density profile
as long as the atomic cloud is smooth on distances
comparable to the optical wave length A.

In the following, we provide an analytical analysis of this
universal dynamics for the superatom state |W). It turns out
to be convenient to split the Hamiltonian H;, = Hy + Hp
into two parts, where Hp (Hp) describes the virtual
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exchange of forward (backward) propagating photons,
respectively. The part describing interaction between the
atoms due to forward propagating photons is given by

h .
Hy =5 [ dsdysenx = )eHe st (9506, (7
1

and analogously for Hp. These Hamiltonians are exactly
solvable [34] and the spectrum takes the form E, =
(hy/2)cot(an/2N) with a an odd integer and —N <
a < N. Furthermore, the eigenstates are

o F) — ﬁ / dxe* S (x) exp (-i%’p(x)) G), (8

with the operator F(x f dzi,(z) counting the number
of ground state atoms on the left of position x; similar
for |a, B).

For a large atom number N >> 1, only states with |a| <
N have significant overlap with the superatom state with
W) = =>",2/(na) ) and the energies reduce to
E, = Nhy/za. As a result, the probability to remain in
the bright state, given only the forward propagating part of
the Hamiltonian, is given by [y(#/7)]*> with ¢ = z/Ny and

I N

= (
It is this universal function that P(¢) approaches for an
increasing number of atoms (see Fig. 2). In order to
understand this observation, there are two important points
to notice: First, only those states |a, F') with small values of
|| have a significant overlap with |W). In addition, these
states dominate the fast dynamical behavior with the
characteristic energy scale E, = hyN/z. It is therefore
sufficient to restrict the analysis to low values of |a].
Second, the states |a, F) with low values of |a| become
exact eigenstates of the full Hamiltonian H,, with energy
E, in the limit of a large particle number N — oo and a
smooth atomic density distribution with ¢ > A. Then, the
universal dynamics P(t) = [y(t/7)]* is the asymptotic
dynamical behavior for large particle numbers. Note that
the precise condition of low values of a reduces to |a| <
o/ as shown below.

In order to prove the statement that the states |a, F//B)
with low values of @ become exact eigenstates in the limit
N — o and A/c — 0, we analyze the wave function
overlap between eigenstates of Hy with the eigenstates
OfHBﬂle h(zﬂ* < >/E0 < >/ﬂ and
the matrix element §, = (a, ,F)/E,. These dimen-
sionless parameters take the form

—|—2n

dx

o= ﬁ N 2”“<G|ng(x)e ilz(a+p)/N|F |G> (10)

T R
X (Gt (x) ity (y)e /NEQ=FON|G). (11)

In the limit N — oo, we can replace the atomic density
operator by its averaged expectation value n(x) as the
fluctuations in the density vanish with 1/ V/N. Then, the
overlaps in /s reduce to the Fourier transformation of a
smoothly varying function. Therefore, the overlap between
states with low numbers of a, f, i.e., 2|k| > z|a + p|/o,
vanishes for /6 — 0; here, o denotes the characteristic size
of the atomic cloud in general. For example, it vanishes
exponentially for a Gaussian density distribution, while for
a stepwise atomic distribution, it vanishes as (1/¢)?. On the
other hand, overlaps with || 2 /4 are suppressed by the
factor 1/4 in Eq. (10). Similarly, the expression for &,
reduces to 8, = co(1/0) + cja(A*/6?) + O((A/06)?), with
dimensionless parameters ¢, and c; of order unity, which
only depend on the atomic density distribution n(x). The
first term is an irrelevant shift in energy, while the second
correction again vanishes as (1/¢)?. In conclusion, we have
demonstrated that the eigenstates ) with energy E,
become exact eigenstates of the full Hamiltonian H, for
|a] < ¢/ in the limit N — co and 1/6 — 0.

Next, we analyze the leading correction due to a finite
number of particles N in the regime A < ¢. The main
influence are deviations from the mean density distribu-
tion n(x) due to the random distribution of the particles
within each experimental realization. These fluctuations
lead to fluctuations of h,; and §,. We illustrate this
behavior for the overlap w, = (a, ). The important
quantity is the variance of these fluctuations, i.e., Aw, =

V{IWalPais = (Wal)3» and its leading contribution takes

the form Aw, = 1/+/N. This result is derived using the
general relation

(2, (), () = o (eI (y) 4 n()o(x =), (12)
valid for a thermal gas on distances studied in the present
setup. Furthermore, the full distribution function for |w,|*
can be derived (See Supplemental Material [34]), which
leads to an exponential distribution with a mean value 1/N.

The last step to understand the behavior of P(¢) is to
derive the leading correction to the energies E, using

perturbation theory in the small parameter w,,

E:I:

1 ,
L =14lw with |a, +) = — + ¢%«|a, B
E, [Wal ) ﬂ( ) |, B))
and w, = |w,|e®«. Therefore, the relevant energies of the

Hamiltonian H| fluctuate within each experimental reali-
zation, with a variance AE, = E,/\/N giving rise to a
characteristic dephasing rate 74, = 7/ v/Ny. This observa-
tion allows us to derive the leading dynamical behavior
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P(t) for the superatom states |W) by performing the
average over many different experimental realizations
using the knowledge on the distribution function of |w,|?

P(1) = {%ano (zni 12" (2;/4: 1)
<21}
SR A

|G &

with f(x) = xD(x) and the Dawson function D(x) =
e™ [¥dte” with the asymptotic limit f(x — co) = 1/2.
The first term in Eq. (13) is a modification of the universal
function [Eq. (9)], which now includes damping on a time
scale z4,. For long times 7 > 74, the dynamics saturates at

b

= 2 41
P — S [—2 ) ==, 14
<t> 1>74p £ <7r(2n + 1)> 6 ( )

In Fig. 3, we compare the numerically calculated P(t) for
N = 1000 averaged over 10° realizations, with a Gaussian
density distribution and ko = 100, and P(z) given in
Eq. (13), and we find an excellent agreement.

Finally, we analyze the dissipative dynamics. The
collective enhancement of the coupling between the for-
ward propagating waveguide mode and the |W) state also
implies an enhanced spontaneous emission rate I'y = Ny
into the forward direction. In turn, the spontaneous
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FIG. 3. Comparison between the numerically and analytically
calculated time evolution of |W) under H . Blue (dashed) curve:
Numerically calculated time evolution for N = 1000 particles
averaged over 103 realizations with a Gaussian distribution and
ko = 100. Orange (solid) curve: Analytical prediction for 1/o <«
1 and large N. (Inset:) Zoomed image of the dynamics for a better
comparison between the numerically and analytically calculated
time evolution. Note that there is hardly any visible difference.

emission into the backward propagating mode, I', depends
on the details of the atomic distribution within each
experimental realization. In the case of a smooth atomic
distribution whose characteristic length scale ¢ is much
larger than the optical wave length A, the decay rate
averaged over many realizations reduces to I'z =y, and
it accounts for the spontaneous emission of a single atom.

Itis important to point out that the characteristic time scale
for the revivals in the coherent dynamics and the dissipative
part are of the same order. On one hand, we conclude that the
coherent part always provides an intrinsic contribution to
the dephasing of a superatom state. On the other hand, it is
important to disentangle the dissipative dynamics and the
coherent part for the experimental observation of the revivals.
This goal can be achieved by quenching the spontaneous
emission by tailoring the waveguide.

This approach is described in the following for an
experimentally realistic setup. Such a setup exhibits in
addition to the coupling to the waveguide naturally also a
spontaneous emission into free space with rate y,. As a first
requirement, this decay must be comparable or smaller than
the decay into the waveguide, i.e., y 2 79, which can be
achieved in current experimental setups [17,35]. Then, the
coherent dynamics, as well as the dephasing, are collec-
tively enhanced and appear on a time scale much faster
than residual losses, Ny > /Ny > y,. Second, the initial
preparation of the setup into the superatom state |W) is
achieved using a 7z pulse with a fast time scale compared to
the characteristic dynamics 7. As the Rabi frequency is also
collectively enhanced, this condition reduces to € > y\/ﬁ s
with the single atom Rabi frequency €. To bring out the
effect of the coherent dynamics, we propose an experi-
mental setup, where the atoms are coupled to a one-
dimensional photonic crystal, or Bragg grating, such that
the emission process is strongly suppressed due to the
opening of a band gap, while the virtual photons mediating
the exchange interaction can still propagate outside the
photonic band gap. In order to satisfy this condition, the
size of the photonic band gap A is required to be in the range
' < A < 2rc/o, where o is the characteristic size of the
system. The lower bound results from the fact that the emitted
photon has a Lorentzian spectrum. The upper bound derives
from the condition that the virtual photons should be able to
propagate with a linear dispersion, such that the initial form
of the exchange Hamiltonian is unaffected. For typical
quantum optics experiments, the system size is in the
micrometer regime which relates to a mode spacing of the
virtual photons of a few THz. In addition, the decay into
the waveguide is typically in the range of MHz, providing
the enhanced decay rate ['y = Ny in the lower GHz regime
for N ~ 10* atoms. This requires the width of the gap to be
of the size of a few ten to hundred GHz. Such gratings have
been produced, for example, in germanosilicate optical fibers
[36], and they have been specifically designed for quantum
optics experiments [37].

013601-4



PHYSICAL REVIEW LETTERS 121, 013601 (2018)

In conclusion, we demonstrated that the nonequilibrium
dynamics of a quantum many-body system, consisting of
atoms coupled to a one-dimensional waveguide, can exhibit
highly nontrivial universal dynamics characterized by
revivals and eventually a saturation on 1/6. This observa-
tion is independent on the averaged atomic distribution
n(x), and it becomes more pronounced for increasing
particle numbers. In the present analysis, we chose a fixed
number of atoms within each experimental realization.
However, it is straightforward to derive that for a Poisson
distributed number of atoms, the only modification in the
dynamics is the enhancement of the dephasing rate by a

factor \/Z while the revivals and the saturation remain
unaffected. We expect that similar phenomena can also
appear in free space for two-level systems strongly coupled
to a single highly focused light mode.
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