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Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that
two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced
nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory
an effective Schrödinger equation describing this for an arbitrarily strong impurity-boson interaction.
We furthermore compare with quantum Monte Carlo simulations finding remarkable agreement, which
underlines the predictive power of the developed theory. It is found that bipolaron formation typically
requires strong impurity interactions beyond the validity of more commonly used weak-coupling
approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable
in present experiments, and we describe a procedure to probe their properties.
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The notion of quasiparticles is a powerful concept that is
indispensable for our understanding of a wide range of
problems from helium mixtures and condensed matter
systems to nuclear matter [1–3]. Quasiparticles can expe-
rience induced interactions mediated by their surroundings.
The induced interaction is inherently attractive and can
therefore lead to the formation of bound states. This is the
origin of Cooper pairing in conventional superconductors
[4] where the size of the Cooper pairs typically is much
larger than the average distance between unbound quasi-
particles. Bipolarons stand out as an important example
of the opposite limit, where two quasiparticles, so-called
polarons, form a bound state much smaller than the average
distance between the unbound polarons. The formation of
bipolarons is suggested to be the mechanism behind
electrical conduction in polymer chains [5,6], organic
magnetoresistance [7], and even high temperature super-
conductivity [8,9].
The recent experimental realization of polarons in

ultracold quantum gases [10–16] has opened up unique
opportunities to study quasiparticle physics in a highly
controlled manner. So far, experimental and theoretical
efforts have focused on single-polaron properties in
degenerate Fermi [10–14] and Bose gases [15,16], for
which we now have a good understanding. Bipolarons
in Bose-Einstein condensates (BECs) have been
explored within the Fröhlich model [2], which is valid
only for weak interactions [17]. Yet, their observability
hinges on sufficiently strong binding, and the formation
of bipolarons in atomic gases remains an outstanding
question that requires a new theoretical framework for
strong interactions.
In this Letter, we present such a theory and demonstrate

that two impurities immersed in a BEC can indeed form

bound states for sufficiently strong interactions between the
impurities and the condensate atoms. Based on field theory,
we derive an effective Schrödinger equation with a nonlocal
polaron-polaron interaction that describes the emergence of
bipolarons. This effective description provides an intuitive
and feasible approach to account for arbitrarily strong
impurity-boson interactions, and it is furthermore shown
to be in remarkable agreement with first-principle quantum
Monte Carlo results. Our theory allows us to reliably predict
the existence of bipolarons under realistic conditions, and it
demonstrates that it is possible to realize bipolarons with
sufficiently strong binding to enable their observation.
We consider two impurities of mass m immersed in a

zero-temperature BEC of bosons with massmB and density
nB. As is typical for cold-atom experiments, the BEC
features weak interactions with n1=3B aB ≪ 1, so that it is
accurately described by the Bogoliubov theory. Here, aB is
the scattering length for the zero-range boson-boson
interaction. The interaction of a single impurity with the
BEC is characterised by the scattering length a, and it leads
to the formation of the Bose polaron [18–28], which was
recently observed experimentally [15,16].
Two polarons can interact strongly by exchanging

density fluctuations in the BEC, even when there is no
significant direct interaction between the actual impurities.
This induced interaction is inherently attractive and can
therefore facilitate bound dimer states, as illustrated in
Fig. 1(a). Within a field-theoretical formulation, two-body
bound states in a quantum many-body system can be
identified as poles of the generalized scattering matrix Γ.
Considering the scattering of two impurities from states
with energy momenta ðk1; k2Þ to ðk3; k4Þ, the Bethe-
Salpeter equation for the scattering matrix reads in the
ladder approximation [29] [see Fig. 2(a)]
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Γðk1; k2; k1 − k3Þ ¼ Vðk1; k2; k1 − k3Þ þ
X

q

Vðk1; k2; qÞ

× Gðk1 − qÞGðk2 þ qÞ
× Γðk1 − q; k2 þ q; k1 − q − k3Þ:

ð1Þ

Here GðkÞ is the impurity Green’s function, k ¼ ðk; zÞ is
the four-momentum vector, and Vðk1; k2; qÞ is the induced
interaction between two impurities. We calculate this
interaction using the diagrammatic scheme illustrated in
Fig. 2(b), which simultaneously accounts for arbitrarily
strong boson-impurity scattering and the propagation of
density waves in the BEC [30,31].
In order to derive an effective Schrödinger equation for

the bipolaron, we change our description from bare
impurities to polarons by approximating the impurity
Green’s functions in Eq. (1) by their value around the

polaron poles; i.e., GðkÞ ≃ Zk=ðz − ωkÞ. Here ωk is the
energy of a polaron with momentum k and quasiparticle
residue Zk. We furthermore multiply the Bethe-Salpeter
equation (1) by Zk1

Zk2
so that it gives the scattering matrix

ΓP of two polarons instead of two impurities. This gives

Veffðk1; k2; qÞ ¼ Zk1
Zk2

Vðk1; k2; qÞ ð2Þ

for the effective polaron-polaron interaction. Since it
depends on the incoming k1 and k2, as well as the
transferred four-momentum q, a direct solution of the
Bethe-Salpeter equation is very difficult. We therefore
neglect retardation effects and take the static limit of the
interaction setting all energies to zero in Veff . This is a
good approximation if the binding energy jEBPj of the
bipolaron is smaller than the typical energies of the
Bogoliubov modes exchanged between the polarons, i.e.,
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijEBPj=m
p

≪ c with c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πnBaB

p
=mB the speed of

sound in the BEC. Neglecting the frequency dependence of
Veff means that the frequency sum involving the two
impurity Green’s functions in Eq. (1) can be performed
analytically. The Bethe-Salpeter equation (1) then reduces
to the Lippmann-Schwinger equation, which in turn is
equivalent to the Schrödinger equation for two polarons
interacting via an instantaneous interaction. It reads in the
center of mass frame

EBPψðkÞ ¼ 2ωkψðkÞ þ
X

k0
Veffðk;k0Þψðk0Þ; ð3Þ

where ψðkÞ is the relative wave function of the bipolaron
with energy EBP. The effective interaction for two polarons
with momenta ðk;−kÞ scattering into ðk0;−k0Þ is

(a)

(b)

(c)

FIG. 1. (a) The cartoon shows Bose polarons forming a
bipolaron as a consequence of a mediated interaction. (b) Binding
energy EBP of the bipolaron as a function of the impurity-boson
interaction strength for two bosonic impurities withm ¼ mB. The
solid red and dashed black lines are solutions to Eq. (3) with the
induced interaction given by Eq. (4) for the gas parameters
nBa3B ¼ 10−6 and nBa3B ¼ 10−5. The red squares and black
circles are the results of the DMC calculations for the same
two gas parameters. The long dashed blue line is the ground state
energy of the Yukawa interaction Eq. (5) for nBa3B ¼ 10−6.
(c) The corresponding inverse size 1=σ ¼ ξB=

ffiffiffiffiffiffiffiffi
hr2i

p
of the

bipolaron wave function, where ξB ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnBaB

p
, is the BEC

coherence length. Vertical arrows denote the critical strength to
form a bound state.

FIG. 2. (a) Diagrammatic representation of the Bethe-Salpeter
equation for impurity-impurity scattering. The red lines are the
impurity Green’s function, and the double wavy line is the
induced interaction. (b) The induced interaction. The black lines
are normal and anomalous BEC Green’s functions, the dashed
lines are condensate bosons, and T is the impurity-boson
scattering matrix in the ladder approximation.
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Veffðk;k0Þ ¼ Z2nB½2T ðk; 0ÞT ðk0; 0ÞG11ðk − k0; 0Þ
þ T 2ðk; 0ÞG12ðk − k0; 0Þ
þ T 2ðk0; 0ÞG12ðk − k0; 0Þ�; ð4Þ

where G11ðk; 0Þ and G12ðk; 0Þ are the normal and anoma-
lous Green’s functions for the bosons and T ðk; 0Þ is the
boson-impurity scattering matrix, all evaluated at momen-
tum k and zero energy. Note that T is distinct from ΓP,
which describes the scattering of two polarons. We calcu-
late the polaron energy ωk and residue Zk using an
extended ladder scheme with the effective mass approxi-
mation ωk ¼ k2=2m� þ ω0, where ω0 is the energy of a
zero-momentum polaron, and assuming that Zk ≈ Zk¼0.
This scheme agrees well both with experimental data and
with Monte Carlo calculations for the single-polaron
properties. More details are given in the Supplemental
Material [32].
With Eq. (3), we have arrived at an effective Schrödinger

equation for the bipolaron. In addition to providing an
intuitive picture, it is much simpler to solve than the full
Bethe-Salpeter equation (1), yet it gives accurate results
even for strong coupling as we shall demonstrate shortly.
The fact that Eq. (3) is a two-body effective description
of an underlying many-body problem is reflected in the
energy dispersion ωk and by the fact that the interaction is
nonlocal; i.e., Veffðk;k0Þ ≠ Veffðk − k0Þ. It becomes local
only for weak coupling jknaj ≪ 1 with k3n=6π2 ¼ nB,
where the boson-impurity scattering matrix reduces to
the constant T ν¼2πa=mBI with mBI ¼ mmB=ðmþmBÞ.
Equation (4) then simplifies to the well-known second
order (in a) Yukawa expression

Veffðk;k0Þ ¼ −T 2
νχðk − k0; 0Þ; ð5Þ

where χðk; zÞ ¼ nBk2=½mBðz2 − E2
kÞ� describes density-

density correlations in the BEC. Our theory extends this
result into strong coupling by including multiple impurity-
boson scattering.
We notice that in real space, the nonlocal interaction term

in Eq. (3) reads
R
d3r2Veffðr1; r2Þψðr2Þ. To quantify the

nonlocality, we write Veffðr1; r2Þ as a function of r ¼
r1 − r2 and R ¼ ðr1 þ r2Þ=2, where r1 and r2 denote the
relative distances between the in- and outgoing polarons.
The local Yukawa interaction Eq. (5) can then be written as
VeffðR; rÞ ¼ δðrÞα expð− ffiffiffi

2
p

R=ξBÞ=R in real space, where
α ¼ T 2

νnBmB=π. We define the “local” and “nonlocal”
parts of the interaction as UðRÞ ¼ R

d3rVeffðR; rÞ and
uðrÞ ¼ R

d3RVeffðR; rÞ. For the Yukawa interaction, we
have UðRÞ ¼ α expð− ffiffiffi

2
p

R=ξBÞ=R and uðrÞ ∝ δðrÞ.
Figure 3 plots UðRÞ for nBa3B¼10−6 and 1=kna ¼ −0.4.
We see that whereasUðRÞ approaches the Yukawa form for
large distances, it differs significantly for R=ξB ≲ 1. In
particular, UðRÞ is finite for R → 0. We also plot the wave

function ψðr1Þ of the lowest bound state offset vertically
by its binding energy EBP, to illustrate that it extends well
beyond the classical turning point UðRÞ ¼ EBP. This is a
consequence of the nonlocal character of the interaction.
The inset of Fig. 3 plots uðrÞ, which shows that the
nonlocality given by the width of uðrÞ increases with
increasing interaction. This nonlocality is a characteristic
sign of the underlying many-body physics, which is
analogous to the case of the nuclear force [33].
In order to verify the accuracy of our theory and

the involved approximations, we also perform diffusion
Monte Carlo (DMC) simulations [27,32], which in prin-
ciple takes into account all possible impurity-boson corre-
lations. To this end, we determine the ground state energy
E0 for a BEC ofN particles in a box with periodic boundary
conditions. We then obtain the bipolaron binding energy
EBP ¼ E − 2ω0 ¼ E2 − 2E1 þ E0 from the ground state
energies E1 and E2 of the same condensate but containing
one impurity and two impurities, respectively. Details of
the DMC calculations are given in the Supplemental
Material [32].
Figure 1(b) shows the bipolaron binding energy EBP in

units of En ¼ k2n=2m as a function of the impurity-boson
scattering length a. We consider the case of bosonic
impurities, so that the bipolaron wave function is sym-
metric under particle exchange (s-wave symmetry). Results
obtained from our DMC simulations and the effective
Schrödinger equation using the interaction Eq. (4) as well
as Eq. (5) are compared for two different BEC gas
parameters. We keep a < 0 here and in the following.
For both interactions, we find that bound bipolaron states
with EBP < 0 emerge beyond a critical interaction strength
knac which is marked by the vertical lines in Fig. 1. Beyond
this critical value, the binding energy initially increases
very slowly since the polaron-polaron interaction is at least

FIG. 3. The local part UðRÞ of Veffðr1; r2Þ (solid black) and
the Yukawa interaction (dashed green) for nBa3B ¼ 10−6 and
1=kna ¼ −0.4. The corresponding s-wave binding energy EBP
and wave function are shown by solid red and dashed orange
lines. Inset: the nonlocal part uðrÞ for 1=kna ¼ −10 (dashed
blue), −1.5 (solid gray), and −0.4 (short dashed purple).
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a second order effect in a. For stronger coupling knjaj≳ 1,
the binding energy crucially becomes significant compared
to the single-polaron energy ω0, which is maximally of
order En [19,22,34]. We moreover find that a smaller gas
parameter leads to deeper binding, reflecting that the BEC
becomes more compressible and hence induces a stronger
effective interaction.
The predictions of our effective theory are in remarkably

good agreement with the numerical DMC results for the
entire considered range of coupling strengths kna. This level
of agreement is particularly striking in the strong-interaction
regime kna ≳ 1, which does not offer a small parameter to
develop a controlled many-body theory. Yet, the predictive
power of our description arises from the systematic combi-
nation of two reliable theories. First, the boson-impurity
scattering is treated within the ladder approximation, which
has turned out to be surprisingly accurate for cold atomic
gases [35]. Second, the BEC density oscillations that
mediate the interaction are described by the Bogoliubov
theory, which is accurate for the typical situation of a small
gas parameter. Respectively, our approach presents a rare
instance of an intuitively simple yet accurate theory for a
strongly interacting many-body system.
In Fig. 4, we compare the resulting bipolaron energy for

the two cases of bosonic and fermionic impurities. We have
chosen the mass ratiom=mB ¼ 40=23 corresponding to the
experimentally relevant case of 40K fermionic atoms in a
23Na BEC [36,37]. While both cases promote the formation
of bipolaron states beyond a critical interaction strength,
Fig. 4 clearly illustrates that fermionic impurities are more
weakly bound than their bosonic counterparts. This is
simply because their wave function must have p-wave
symmetry.
To accurately determine the critical coupling strength

knac for bipolaron formation, we consider the size σ ¼ffiffiffiffiffiffiffiffi
hr2i

p
=ξB of the dimer state with hr2i ¼ R

d3rjψðrÞj2r2.
Since hr2i diverges when the polarons unbind, the inverse

1=σ provides a clear indicator of the critical interaction
strength. Indeed, its dependence on 1=kna depicted in
Fig. 1(c) features a kink at knac beyond which 1=σ
increases abruptly from zero. Our theory recovers the
classic results for the critical coupling strengthffiffiffi
2

p
=αξBmr ¼ 1.1905 and

ffiffiffi
2

p
=αξBmr ¼ 0.2202 for bound

s- and p-wave states in the Yukawa potential [38–40]. This
demonstrates the accuracy of our approach.
The Yukawa interaction Eq. (5), which results from a

second order treatment within the Fröhlich model, is
accurate only for weak interactions knjaj ≪ 1. Indeed, it
predicts critical interaction strengths knac and binding
energies EBP substantially different from our strong cou-
pling theory in Figs. 1 and 4. This is because second order
theory approximates T ðk; 0Þ ≈ T ν, which is a significant
overestimation for kna≳ 1. Since the bipolaron is observ-
able only for not too small interaction strengths, the
Fröhlich model is insufficient to analyze bipolarons in
atomic gases. This is further illustrated in Fig. 5, where we
show the critical interaction strength knac as a function of
the gas parameter nBa3B, obtained using both Eq. (4) and the
Yukawa potential Eq. (5). As can clearly be seen, the
Yukawa potential is reliable only for weak impurity-boson
interaction whereas the BEC has to be very compressible in
order for the induced interaction to bind two polarons.
The two Bose polaron experiments so far, which had the

gas parameters nBa3 ≈ 2 × 10−8 [15] and nBa3 ≈ 2 × 10−5

[16], both used radio-frequency (rf) spectroscopy to
observe the polaron. The same technique can in fact be
employed to detect bipolarons, whereby the rf field induces
photoassociation of polaron dimers leading to a resonantly
enhanced atom-loss signal. In both measurements, the
observed polaron spectrum had a typical line width of
∼En. The bipolarons found in our strong coupling theory
should thus be observable for strong interactions, where we
predict a bipolaron resonance to emerge well separated

FIG. 4. Binding energy EBP of two bosonic (solid black line)
and fermionic (dashed red line) impurities with the mass ratio
m=mB ¼ 40=23 for nBa3B ¼ 10−6. The dashed blue line is to the
Yukawa binding energy for the p-wave bipolaron. Inset: the
radial parts of the s- and p-wave functions (solid black and
dashed red, respectively) for 1=kna ¼ −0.4.

FIG. 5. The critical interaction strength knac for the formation
of bipolarons as a function of knaB (or nBa3B) for bosonic (solid
black line) and fermionic impurities (dashed red line). The black
triangles and red squares are the Yukawa result for bosonic and
fermionic impurities, respectively.
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from the single-polaron signal. A natural question arises
whether there are bound states of more than two polarons,
e.g., tripolarons consisting of three polarons. Indeed, it was
found for the Yukawa potential that tripolarons can be
stable, but only for a narrow range of coupling strengths
and with a small binding energy: at the threshold knac for
bipolaron formation, the binding energy of the tripolaron is
−0.29knaBEn [41] making them very hard to observe for
knaB ≪ 1. We note that the attractive interaction mediated
by Bogoliubov modes also can give rise to superfluid
pairing in Bose-Fermi mixtures [42–47].
In summary, we showed that two polarons formed by

impurities in a BEC can merge into a bipolaron state that is
bound by a nonlocal interaction mediated by phonons in the
BEC. The bipolaron states are a pure many-body effect
arising from the surrounding BEC. They are therefore
distinct from three-body Efimov states of two impurities
and one boson, which are stable in a vacuum [48]. The
theory described in this Letter opens the door for a number
of future investigations. For example, the nonlocal nature of
the effective interaction suggests exotic and interesting
many-body physics of multiple interacting polarons. This
question as well as the potentially profound effects of
different system dimensions should be addressable in future
work by the presented theoretical framework. We finally
note that the induced interaction between Fermi polarons is
rather weak [49], which has made the observation of
bipolarons in degenerate Fermi gases challenging [14].
On the other hand, the results of this Letter show that the
observation of bipolarons should now be possible in
currently available BECs [15], presenting an exciting
positive outlook on future experiments.

We thank Jan Arlt and Pietro Massignan for valuable
discussions. This Letter was supported by the Villum
Foundation and the Danish National Research
Foundation through a Niels Bohr Professorship.
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