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By performing molecular dynamics simulations with up to 132 million coarse-grained particles in half-
micron sized boxes, we show that hydrodynamics quantitatively explains the finite-size effects on diffusion
of lipids, proteins, and carbon nanotubes in membranes. The resulting Oseen correction allows us to extract
infinite-system diffusion coefficients and membrane surface viscosities from membrane simulations despite
the logarithmic divergence of apparent diffusivities with increasing box width. The hydrodynamic theory of
diffusion applies also to membranes with asymmetric leaflets and embedded proteins, and to a complex
plasma-membrane mimetic.
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Molecular dynamics (MD) simulations provide insight
into the organization and dynamics of lipids and membrane
proteins [1–4]. Receptor clustering, lipid second-messenger
patterning, and lipid domain formation occur in systems
with complex lipid composition [5] on length scales
≥ 100 nm. Advances in computing, coarse-grained force
fields [6–8], and simulation management [9–11], open up
this biologically important regime to simulations [2,12,13].
However, simulations of dynamics in membranes face a
serious challenge: the translational diffusion coefficients of
membrane-embedded molecules are ill defined. As antici-
pated from hydrodynamic theory [14] and shown by MD
simulations [15,16], the apparent diffusion coefficients
diverge logarithmically with the size of the simulated
membrane patch. One can think of a membrane particle
and its periodic images above and below as forming an
infinite quasicylindrical structure embedded in a layered
medium that effectively imposes 2D flows. In this picture,
the logarithmic divergence of the diffusion coefficient is a
molecular-scale manifestation of Stokes’ paradox, i.e., the
vanishing hydrodynamic friction of an infinite cylinder in
an infinite medium with 2D flow. The divergence appears
to preclude a meaningful comparison between simulation
and experiment for membrane dynamic processes.
Here we show that hydrodynamic theory [14,15] can be

used to overcome this challenge, as in neat fluids [17].
First, we show that the logarithmic divergence can be
broken by expanding the system also in the third dimen-
sion, normal to the membrane. This requires simulations
with ≥ 108 coarse-grained particles. Then we show that
the Oseen correction, a hydrodynamic correction using the
Oseen tensor for a point perturbation [15], quantitatively
accounts for the observed behavior, from lipids to mem-
brane proteins and over the entire range of box widths and
heights. On this basis, we develop a procedure to correct the

simulated diffusion coefficient. By exploiting the strong
finite-size dependence, we not only extract the true infinite-
system diffusion coefficients D0 of lipids or embedded
proteins, but also the difficult to obtain membrane surface
viscosity ηm. We apply the formalism to simulations of
the diffusion of proteins embedded in lipid membranes,
and of a plasma-membrane model with a complex lipid
composition.
For neat [17,18] and confined fluids [19], hydrodynamic

self-interactions under periodic boundary conditions
(PBCs) account for the system-size dependence of self-
diffusion coefficients DPBC in MD simulations,

DPBC ¼ D0 þ kBTlim
r→0

Tr½TPBCðr⃗Þ − T0ðr⃗Þ�=nd: ð1Þ

In the Oseen correction,ΔD ¼ DPBC −D0 is approximated
as the difference between the Oseen tensors TPBCðr⃗Þ for
PBCs and T0ðr⃗Þ for the infinite system at the origin, r → 0,
with Tr the trace, nd the dimension (nd ¼ 2 for mem-
branes), kB the Boltzmann constant, and T the absolute
temperature.
This formulation suggests hydrodynamic corrections

also for membrane simulations [14,15]. In the Saffman-
Delbrück (SD) model [20–22], the membrane is treated as a
viscous fluid embedded in an infinite solvent system.
Camley et al. [14] extended the SD model to PBCs by
representing the Oseen tensor as a two-dimensional lattice
sum, TPBC

ij ðr⃗Þ ¼ L−1
x L−1

y
P

k⃗≠0τijðk⃗Þ expð−ik⃗ · r⃗Þ, where

τijðk⃗Þ¼ðδij−kikj=k2Þ=½ηmk2þ2ηfk tanhðkHÞ�. The ratio
of membrane-surface and solvent viscosities ηm and ηf,
respectively, defines the SD length LSD ¼ ηm=2ηf. The

wave vectors are k⃗ ¼ 2πðnx=Lx; ny=LyÞ with ni integers

and Li the box widths (i ¼ x, y), k ¼ jk⃗j, and δij the
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Kronecker delta. 2H ¼ Lz − h is the height of the solvent
layer separating the periodic images of the membrane,
with h the membrane thickness and Lz the box height. The
tanh term accounts for the influence of the surrounding
solvent on the diffusion inside the membrane. An
Oseen tensor for monotopic inclusions (spanning only
one leaflet, such as typical lipids) was proposed as [14]:
τijðk⃗Þ¼ðδij−kikj=k2ÞAðkÞ=½AðkÞ2−BðkÞ2�, with AðkÞ¼
ηmk2=2þηfk=tanhð2HkÞþb, BðkÞ¼ ηfk=sinhð2HkÞþb,
and b the interleaflet friction coefficient. We sped up
convergence of the lattice sums in Eq. (1) by adding and
subtracting integrals [15] that can be solved analytically for
the transmembrane case and numerically for the monotopic
case (see Supplemental Material [23]). All correction
formulas are implemented in PYTHON and available [24]
along with an example application.
For the diffusion in membranes contained in flat square

simulation boxes, L ¼ Lx ¼ Ly ≫ Lz, one has [15]

DPBC ≈D0 þ
kBT
4πηm

ln ½L=ðLSD þ 1.565HÞ� − 1.713
ð1þH=LSDÞ

: ð2Þ

Accordingly, DPBC diverges asymptotically as lnL for
large widths L and fixed height H (or Lz). This approxi-
mation is also valid for narrow boxes, L < LSD, if one sets
H ¼ 0 instead of using the actual value [15]. At a box
width of Lc≈ðLSDþ1.565HÞe1.713, in-plane and between-
membrane self-interactions effectively cancel, and the box-
size corrections vanish, DPBC ≈D0. In numerical tests, the
flat-box approximation Eq. (2) is within 2% of Eq. (1) for
atomistic and coarse-grained systems (see Supplemental
Material [23]). The hydrodynamic correction (but not D0)
is insensitive to variations in the interleaflet friction
coefficient b for typical lipid models (see Supplemental
Material [23]). The simpler transmembrane correction is
thus expected to be an excellent approximation also for
monotopic molecules such as individual lipids.
Key open questions are as follow: (1) Does the Oseen

correction apply beyond the flat-box limit with its loga-
rithmically divergent DPBC? (2) How can one extract
meaningful diffusion coefficients from membrane simula-
tions? (3) Does a simple materials parameter ηm suffice to
describe the dynamics in complex asymmetric membranes?
To address the first challenge, we performed simulations
with boxes large also normal to the membrane, Lz ≫ LSD.
To be consistent with Ref. [15], we simulated lipid
membranes using the MARTINI coarse-graining scheme
[6] and the GROMACS 4.5.6. software package [25]. The
bilayer structures were built using INSANE.PY [9]. Water
was added to reach the desired box heights. Because
undulations of the lipid bilayer shorten the distance of
lipid motions projected onto the x-y plane, we suppressed
long-wavelength undulations by a weak harmonic restraint
acting on the z coordinate of the center of mass of a quarter
of the lipids [5,15]. With these restraints, we assure a

constant wavelength spectrum of undulations over all box
sizes. Otherwise, long-wavelength undulations would only
be suppressed in small boxes, with the longest wavelengths
permitted under PBCs being Lx and Ly. Energy minimi-
zation was followed by equilibration and data production
runs in an isothermal-isobaric (NPT) [26,27] ensemble
with semi-isotropic pressure coupling at 1 bar and 300 K.
Simulation details are listed in the Supplemental
Material [23].
We obtained diffusion coefficients and viscosities by

minimizing χ2 ¼ P
N
i¼1ðDi −DðiÞ

PBCÞ2=σ2i with respect to
D0 and ηm, treating ηf either as an additional parameter in
the minimization or fixing it at the bulk water viscosity, as
determined from independent simulations. i indexes the N
runs with different box sizes. Di is the uncorrected

diffusion coefficient of run i and DðiÞ
PBC ¼ D0 þ ΔDðiÞ with

ΔDðiÞ the Oseen finite-size correction Eq. (1) evaluated
numerically for fixed membrane thickness h ¼ 4.5 nm as
described in the Supplemental Material [23].
The Di were determined from the slopes of straight-line

fits to the mean-squared displacement (MSD) in the
membrane plane [15] over a time window from
40–90 ns for lipids, 4–9 ns for membrane-spanning carbon
nanotubes (CNTs; see Refs. [15,28] for details on the CNT
model), and 20–40 ns for integral membrane proteins,
using shorter times for the latter two because their low
abundance affects the sampling at longer times. We
calculated the MSD with a Fourier-based algorithm [29],
after removing the center-of-mass motion of the membrane
from lipid, protein, and CNT trajectories. Statistical errors
σi were estimated by block averaging using 20 blocks.
Figure 1 shows that Eq. (1) accounts quantitatively for

the calculated diffusion coefficients for systems with up to
132 million particles in simulation boxes L ¼ 0.42 μm
wide and up to Lz ¼ 0.1 μm tall. The simulation
results match the hydrodynamic predictions using ηm fitted
only to flat-box simulations [15] and ηf ¼ 10.2ð4Þ Pa s
determined independently from pressure fluctuations [30]
of bulk MARTINI water. From a global fit of the
transmembrane Oseen correction against all POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine)
simulations here and in Ref. [15], we obtained D0 ¼
6.20ð2Þ × 10−7 cm2=s, ηf ¼ 9.6ð2Þ × 10−4 Pa s, and ηm ¼
3.97ð6Þ × 10−11 Pa sm, so that LSD ¼ 20.7 nm. The
monotopic correction with b ¼ 2.9 × 106 Pa s=m [23,31]
gives an indistinguishable fit with the same D0,
ηf¼10.17ð20Þ×10−4Pas, and ηm¼4.05ð6Þ×10−11Pasm.
Thicker water layers weaken between-membrane hydro-
dynamic interactions and slow down lipid diffusion. For the
tallest systems, DPBC approaches a plateau. However, even
with 108 particles, the turnover is incomplete. The limit for
H → ∞ is below D0; i.e., for tall boxes, hydrodynamics
retards diffusion.
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As an additional test of the hydrodynamic model, we
examined the effect of water viscosity on diffusion in the
membrane (Fig. 2). We reduced the SD length LSD by
increasing the mass M of MARTINI water particles up to
tenfold, scaling the water viscosity asM1=2 without altering
the structure and thermodynamics of the system. For large
ηf, LSD becomes small and DPBC approaches the infinite-
box limit D0. As shown in Fig. 2, the water viscosity

dependence of the diffusion coefficients both of lipids in a
neat membrane and of membrane-spanning CNTs quanti-
tatively agrees with the predictions of Eq. (1), further
validating the hydrodynamic model.
We determined hydrodynamic radii Rh of diffusing

molecules by setting their D0 equal to the SD expression
for the diffusion coefficient [20], DSD

0 ¼ kBTð4πηmÞ−1
½lnðηm=ηfRhÞ − γ� with γ ≈ 0.5772 the Euler-Mascheroni
constant. For the CNT, a fit to the data in Ref. [15] gave
D0 ¼ 2.76ð12Þ × 10−7 cm2=s. The resulting hydrody-
namic radius of Rh ¼ 0.83ð14Þ nm agrees with the geo-
metric value of 0.85 nm for this ideal cylinder obtained
by summing the radii of the cylinder (0.615 nm) and a carbon
bead (0.235 nm). Values ofDPBC ≤ 1.9 × 10−7 cm2=s with-
out hydrodynamic correction would have given unphysical
radii Rh ≥ 2.3 nm.
Hydrodynamic theory also accounts for the dramatic

box-size dependence of membrane protein diffusion
(Fig. 3). As a model inner mitochondrial membrane, we
simulated a membrane consisting of POPC and POPE
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanol-
amine) densely packed with the membrane-spanning
protein adenine nucleotide translocase (ANT1) and with
cardiolipin in the inner leaflet [3]. Systems were built with
MemProtMD [10] for a wide range of box widths L
(Fig. 4, upper left) at fixed heights H, such that proteins
covered ≈11% of the membrane area while not yet
forming large clusters within the simulation time. In
simulations using the parameters of Ref. [3], the proteins
and different lipid components exhibit the same finite-size
dependence (Fig. 4, lower left). Despite variations by

FIG. 2. Dependence of diffusion coefficients DPBC and D0 of
POPC lipids and CNTs [15] on water viscosity ηf (L ¼ 40 nm,
Lz ¼ 9 nm, 300 K). Lines show theory [Eq. (1) and DSD

0 ].
Vertical line: ηf for standard MARTINI water.

FIG. 3. MSD of protein ANT1 in model mitochondrial mem-
brane simulated in boxes of widths from L ¼ 12 nm (purple) to
360 nm (red) at constant box height Lz¼10.2 nm (H ¼ 2.85 nm).
Dotted black lines show fits of MSDðtÞ ¼ aþ 4Dt over the time
window used to extract the uncorrected diffusion coefficients D.
The intercept a accounts for local and fast molecular motions
before proper diffusion sets in. In the double-logarithmic inset, the
dashed line indicates a linear dependence on time. The fitting
region is highlighted in gray.

FIG. 1. Diffusion coefficients of POPC lipids from MD
simulations (symbols) as a function of the height H of the water
layers above and below the membrane in simulation boxes of
constant width L ¼ 0.42 μm (top axis: number of particles in the
system). The prediction according to Eq. (1) with the trans-
membrane Oseen tensor is shown as an orange dashed line. D0

and ηm were fitted to POPC membrane simulations in flat boxes
[15] and ηf was determined independently from pressure fluc-
tuations in bulk water simulations [23]. Horizontal lines indicate
the true diffusion coefficient D0 (green) and the limit H → ∞ for
fixed L (red). Shading indicates the uncertainty range (1 s.d.).
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about a factor 50 for the smallest systems, the apparent
diffusivities DPBC grow linearly as a function of lnL with
component-independent slopes, as predicted by the Oseen
correction. Diffusion of POPC and POPE is slower in the
inner leaflet by about 20%, likely due to the presence of
the large cardiolipin molecules. The ANT1 mitochondrial
model membrane has an effective viscosity ηm≈
4.36 × 10−11 Pa sm, and ANT1 has a hydrodynamic radius
ofRh ¼ 2.1ð4Þ nm, close toRh ¼ 2.3 nmestimated from the
convexhull in thexy plane.Bycontrast, uncorrected diffusion
coefficients would have given Rh from 0.7 to 24.3 nm.
The Oseen correction also applies to membranes of even

more complex composition. Figure 4 (right) shows that
finite system sizes affect the diffusion in a plasma-
membrane model [5]. We used the simulation parameters
and the configuration provided in Ref. [32] and built start
configurations as squares of 1, 4, 9, and 16 copies of the
original box. Even without clear phase separation [5],
heterogeneous structures emerged as small clusters of
lipids. Moreover, molecules such as cholesterol flipped
between the leaflets. Nevertheless, the slope of the apparent
diffusion coefficients DPBC with respect to lnL is inde-
pendent of membrane component and leaflet localization,
defining an effective membrane viscosity ηm ≈ 4.73 ×
10−11 Pa sm according to Eq. (2) (Fig. 4, lower right).

Even in asymmetric membranes of complex composition, a
component-independent correction compensates for large
finite-size effects.
We showed that finite-size effects in membrane simu-

lations can be corrected by hydrodynamic theory. The
Oseen corrections are independent of membrane compo-
nent. Complex lipid composition and integral membrane
proteins do not alter the effects in absence of protein
clustering [4], strong protein crowding [33], and phase
segregation. With the Oseen correction Eq. (1) and its
approximation Eq. (2), two simulations in flat boxes of
different widths L suffice to determine proper membrane
diffusion coefficients D0 and membrane viscosities ηm,
using ηf from independent bulk-solvent simulations.
Thermostats are used in standard protocols for membrane
MD simulations. Nevertheless, for weakly coupled rescal-
ing thermostats [26,27], the diffusion of lipids, proteins,
and nanotubes in membranes follows the predictions of
hydrodynamic theory with respect to the dependence on
system size and water viscosity. Based on the remarkable
accuracy in capturing the dynamics of complex lipid
membranes, we expect the hydrodynamic model to apply
to transport phenomena also in other 2D layered materials.

FIG. 4. Diffusion in complex membranes. Upper left: Model inner mitochondrial membrane (L ¼ 360 nm) with 900 ANT1
transmembrane proteins (yellow; see zoom-in). Lower left: DPBC (symbols) and fits to hydrodynamic theory (protein: circles and solid
lines; inner leaflet: squares and dashed lines; outer leaflet: stars and dotted lines; infinite-system values: horizontal lines). Upper right:
Plasma-membrane simulation (L ¼ 286 nm). Lower right: DPBC for representative membrane components that remain in each leaflet
(inner or outer) and for those that jump between both leaflets (“both”). Vertical gray lines indicate L ¼ Lc, where DPBC ≈D0.
Corrections here were calculated using Eq. (2).
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