
 

Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow
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Driven or active suspensions can display fascinating collective behavior, where coherent motions or
structures arise on a scale much larger than that of the constituent particles. Here, we report numerical
simulations and an analytical model revealing that deformable particles and, in particular, red blood cells
(RBCs) assemble into regular patterns in a confined shear flow. The pattern wavelength concurs well with
our experimental observations. The order is of a pure hydrodynamic and inertialess origin, and it emerges
from a subtle interplay between (i) hydrodynamic repulsion by the bounding walls that drives deformable
cells towards the channel midplane and (ii) intercellular hydrodynamic interactions that can be attractive or
repulsive depending on cell-cell separation. Various crystal-like structures arise depending on the RBC
concentration and confinement. Hardened RBCs in experiments and rigid particles in simulations remain
disordered under the same conditions where deformable RBCs form regular patterns, highlighting the
intimate link between particle deformability and the emergence of order.
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Introduction.—Birds, fish, or even humans self-organize
into captivating dynamic patterns on a scale much larger
than the isolated unit [1–3]. In recent years, similar
phenomena have been observed with active micro-units
(either self-propelled or actuated by external fields) [4–8]
such as bacteria [9,10], chemically-activated motile col-
loids and drops [11,12], vibrated grains [13–15], or electri-
cally- and magnetically-driven colloids [16–18].
Flow fields constitute another way to drive the popula-

tions of microparticles (e.g., suspensions) into nonequili-
brium ordered structures (e.g., microfluidic colloidal
crystals [19–23]). Long-range hydrodynamic interactions
between the fluid-embedded particles, i.e., correlations in
the motions of particles mediated by flows in the sus-
pending liquid, underly these self-organizing phenomena
[24–26]. Another factor promoting order is confinement. If
the bounding walls are removed, then the particles can pass
over each other and experience hydrodynamical diffusion
(a cross-flow displacement after collision) [27–30] that,
like classical diffusion, favors homogenization (the inter-
mixing of suspended entities) and tends to destroy any
order. In microfluidic inertialess flows, drops [19,23,
31–37] and red blood cells [38–40] have been observed
to form a single file of regularly spaced cells.
Unlike for the microfluidic pressure-driven flows, struc-

turing of microparticles under confined shear flows has

been studied only to a limited extent, even though there are
experiments showing the formation of trains in red blood
cells (RBC) suspensions [41,42] and emulsions [43]. To fill
this void, we carried out three-dimensional (3D) numerical
simulations, motivated by experimental observations, to
study the formation of two-dimensional (2D) arrays (crys-
tals) by capsules and RBCs sheared between two parallel
plates. We observe order, which intriguingly persists even
when the size of the gap allows the particles to pass over
each other; i.e., the emergence of order does not require
strong confinement. We develop an analytical model that
provides physical insight into the phenomena. The pattern
wavelength (particle-particle separation) predicted by the
model concurs well with simulations and experiments. It
will be seen that the ordering is quite universal and should
arise for a variety of systems.
The model.—The lattice Boltzmann method (LBM)

[44,45] was used to solve the quasi-incompressible
Navier-Stokes equations for fluid flow. The membrane
energy consists of a contribution due to resistance to
bending ðκ=2ÞH2, with H the mean curvature and κ the
bending rigidity modulus, and resistance to in-plane shear-
ing and stretching κsðI21 þ 2I1 − I2Þ=12þ καI22=12, where
κs is the shear elastic modulus, κα is the area dilation
modulus, and I1 and I2 are the in-plane strain invariants
(see [44]). κα=κs ¼ 200 is chosen large enough to preserve
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local area conservation. The RBC size R is taken to be
R ≃ 4 μm. The reduced volume is defined as ν ¼
ð3V=4πÞðA=4πÞ−3=2, with A the particle surface area and
V its volume. ν ¼ 0.64 was used for the RBC model when
compared with experiments, otherwise ν ¼ 0.98 was used
(in this case, we refer to the cell as a capsule). This allowed
computational efficiency without affecting order, provided
that the particle is in the tank-treading (TT) regime. Cas ¼
η0 _γR=κs is the capillary number. Cas is set to 0.05. The
viscosity contrast is fixed to one. The reference shape is
taken to be the equilibrium one in the absence of shear
elasticity. The suspension is sheared between two parallel
planes at a constant shear rate _γ ¼ 2V=W, where 2V is the
relative velocity of the planes and W the channel width
[Fig. 1(a)]. The Reynolds number Re ¼ ρ_γR2=η0 (ρ is the
density of the suspending fluid) is set to 0.5 in most of the
simulations; it is sufficiently low so that inertial effects
remain negligible [46–49].
The experimental set-up.—The experiments were per-

formed in a homemade rheoscope with cone-plate geom-
etry. Microscopic images were taken with a CCD camera
(DMK 41BF02.H, The Imaging Source Europe GmbH,
Bremen, Germany). Normal blood samples were obtained
from the EFS (Etablissement Français du Sang) and kept
refrigerated until use. Solid spherical particles were pro-
duced by suspending RBCs in an isotonic solution of
sodium salicylate (Sigma-Aldrich), thus converting the
biconcave RBCs into spheroechinocytes. This shape was
then conserved by fixation with 0.25% glutaraldehyde
(Alfa Aesar, Karlsruhe, Germany). RBCs and rigid spheres
were washed three times with isotonic PBS (Dulbecco,
biowest, Nuaille, France). RBCs or spheres were suspended
in an isotonic solution of dextran (MW 500000D, Sigma-
Aldrich, Saint-Quentin Fallavier, France) plus phosphate-
buffered saline. The viscosity at room temperature (25 °C)
was 50 mPa s (Anton Paar, Rheo plus, Graz, Austria), unless
otherwise indicated. Suspensions of RBCs or spheres were
prepared with volume fractions between 0.002 and 0.01 and

were loaded into the cone-plate chamber. The shear rate was
varied from 15 to 94 s−1. The viscosity of the hemoglobin
solution of healthy RBCs is around 10 mPa s at room
temperature (25 °C). The experimental capillary number is in
the rangeCas ≃ 0.75–3. The aging of blood sometimes led to
an echinocyte shape, which required significantly higher Ca.
Flow-aligned chains.—RBCs in a shear flow display two

main types of dynamics, depending on the applied shear
stress: TT at large shear stress, where the cell assumes a
stable orientation relative to the applied shear direction, and
tumbling at a low enough shear stress, where the cell
executes a periodic flipping motion [50]. In both simu-
lations and experiments, the parameters are chosen such
that cells are in the TT regime. Experiments and simu-
lations show the formation of regularly spaced chains of
RBCs aligned with the flow direction, see Fig. 1(b) and
Movie 1 and Movie 2 in [51].
Starting from a random initial cell distribution, we

observe a transient regime during which cells mix (hydro-
dynamical diffusion), due to cell-cell hydrodynamic inter-
actions, and migrate towards the midplane due to the
hydrodynamic repulsion by the wall. Once all cells have
reached the channel midplane, the degree of disorder
decreases continuously until the cells reach an ultimate
stable configuration of ordered chains [Fig. 1(b)]. Both
experiments and simulations show that chains can merge
into a stable Y configuration [Fig. 1(c)].
The finite ratio between the channel width W and cell

size R is a crucial factor in the cell structuring. We find that
a stable order is impossible if the cells were considered as
points. An intriguing observation (analyzed in detail below)
is that order persists even for weakly-confined suspensions
(with the gap between planes about ten times the cell radius
R), where one would have expected that cell-cell hydro-
dynamic interactions (responsible for hydrodynamic dif-
fusion), pushing the cells out of the channel center, would
allow the imposed shear flow to advect the cells further
apart, thereby favoring disorder.
Crystals.—Numerical simulations show that at a low

particle volume fraction, capsules form flow-aligned
chains. The spacing between the chains in the vorticity
direction also shows periodicity. The chains slide relative to
each other due to a slight displacement in the X (velocity
gradient) direction and advection by the imposed shear
flow (see Movie 3 in [51]). Interestingly, the chain offset
along X fluctuates in time, but despite these fluctuations,
the order in the Z (flow) direction persists (see also Fig. 1 in
[51]). The chaining occurs when starting from a random
RBC/capsule distribution in 3D. Two closely located
parallel chains repel each other but still preserve their
structures (see Movie 4 in [51]). Increasing the volume
fraction results in the formation of infinite 2D lattices. The
crystal configuration assembles from random initial con-
ditions (Movie 5 in [51]). At a high volume fraction,
disorder prevails. Figure 2 summarizes the phase behavior.
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FIG. 1. (a) A schematic view of the simulation set-up. (b) Both
the simulation and experiment show RBCs organized in stable
chains along the flow direction; W ¼ 3R (R is the RBC radius
defined in text.). The computational domain is LY ¼ 12R,
LZ ¼ 30R. (c) Chains can merge, resembling crystal dislocation.
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In addition to linear chains, numerically, we discovered
other configurations. We explored the stability of other
possible configurations (Fig. 3), in order to probe the
existence of crystalline structures other than one-
dimensional (1D) chains. The simulations show that the
final stable configurations are all symmetric about the flow
direction. These elementary crystal configurations serve as
building blocks to larger crystals and imply the existence of
two types of crystals: (a) a 1D crystal corresponding to an
infinite chain, and (b) a 2D crystal based on the triangular
arrangements in Fig. 3. This triangular arrangement is also
observed in experiments [Fig. 1(c) and Fig. 1 in [51] for the
whole image].
Effect of cell deformability.—An important ingredient

for the emergence of order to be discussed below is the
wall-induced migration that requires cell deformation
[57–59]. For a spherical particle, there is no cross-stream-
line migration in the Stokes regime, owing to the linearity
of the Stokes equations. We analyzed the impact of cell
deformability on the emergence of order (Fig. 4). Our
simulations show that rigid particles never settle in the
midplane (due to the absence of wall-induced migration),
and disorder prevails; solid spheres, even if initially placed
on the midplane, drift apart. This is illustrated by the
simulation in Fig. 4, where a disordered pattern is obtained.
Moreover, Fig. 4(b) shows that the distance between two
given rigid particles increases with time without saturation

(solid line), whereas the same quantity shows saturation
(indicating stable pairing) when deformable cells are
considered (dashed line).
Experiments on hardened RBCs also confirm the lack of

order [Fig. 4(a)]. These results support the idea that the wall-
induced migration, due to particle deformability, plays a
crucial role in the ordering process. Note that, in the presence
of inertia, even a spherical particle will undergo a wall-
induced migration, allowing ordered patterns of rigid par-
ticles to be stabilized [22]. Inertia is also responsible for the
hydrodynamic ordering of rotating disks [26] and the strong
focalization of capsule suspensions [45] in a pressure-driven
flow. Inertia, however, is negligible in our study.
Flow structure around a single cell and around a pair.—

Let us now focus on the basic understanding of the crystal
formation. We first analyze the flow field around a single
cell. Figure 5(a) illustrates the flow around the particle in
the X-Z (shear) plane. Figure 5(b) shows that in the Y-Z
plane, this flow field is quadrupolar in nature. Figures 5(c)
and 5(d) zoom into the flow and show the existence of
recirculation zones, nonexistent in unconfined shear flow
[34,60,61]. Their centers are designated as elliptic points
(EPs) hereafter. The center of a TT cell also constitutes an
EP. Between two EPs, there is a point where the flow,
locally, is hyperbolic [Fig. 5(c)]. This point is referred to as
hyperbolic point (HP). In Fig. 5(a), these points are located
where four colors meet. Movie 6 in [51] experimentally
illustrates the existence of a HP close to a single TT RBC.
The EPs are essential for the formation of RBC chains,
as suggested earlier [41]. The triangular structure in Fig. 3
can be inferred from the quadrupolar field structure. The
leftmost particle tries to attract the two symmetrically
disposed ones towards alignment, whereas these two
particles repel each other in the vertical directions. The
interplay between attraction and repulsion stabilizes this
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FIG. 3. Ordered stable patterns (in ZY projection) of 3, 4, and 5
interacting particles with confinement of W ¼ 2.9R. The com-
putational domain is LY ¼ 18R, LZ ¼ 25R.
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FIG. 4. (a) Configurations for deformable cells after a long
time: Simulation,W¼4.9R, Re ¼ 0.05, LY ¼ 12R, LZ ¼ 37.5R;
Experiment, W ¼ 4.9R, Cas ¼ 0.7, Re ∼ 10−5. Configurations
for rigid spheres after a long time: Simulation, W ¼ 4.5R,
Re¼0.05, LY ¼LZ¼18R; Experiment, W ¼ 4.5R, Re ∼ 10−5.
(b) Distance between two particles as a function of time: the
dashed line corresponds to deformable cells, while the solid line
corresponds to rigid spheres, or hardened RBCs.
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configuration. Figure 6(a) shows the flow field after a stable
pair is formed [(a) left panel; see also Movie 7 in [51] ] and
Fig. 6(b) shows an example of the trajectory of the pairing
cells [(b) inset]. A comparison with Fig. 5(a) shows (i) that
in pair formation the second cell settles close to the EPs
created by the first cell (see also the analytical theory
below) and (ii) that between a cell pair there are two HPs
and one EP.
If pair formation is studied at different confinements, an

almost linear dependence of the equilibrium pair distance
ΔZ0 with channel width is observed, Fig. 6. The exper-
imental data are in good agreement with RBC simulations,
and it is slightly above the capsule simulations and theory
(see below). This indicates that the small reduced volume
of RBCs causing their elongation also contributes to the
equilibrium distance.
Analytical theory for pair formation.—A detailed analy-

sis of this phenomenon (see theory in [51]) shows that the
pairing results from an intricate interplay between (i) a
long-range hydrodynamic attraction of two cells along the
flow direction, (ii) the wall-induced migration across the
streamlines, and (iii) a short range hydrodynamic repulsion
between the cells due to the imposed shear flow (since the
cell mass centers are not exactly on the midplane, their

relative translational velocity is nonzero; thus the shear
flow is acting to separate the pair). As dictated by the
translational invariance along Y, the coordinates of the cells
in the pair can be written as (−ΔX, 0, 0) and (ΔX, 0, ΔZ).
The question amounts to determining the steady-state and
stable positions ΔX0 and ΔZ0.
A steady-state solution corresponds to zero velocity for

both cells (the pair of cells is at rest in the laboratory frame).
The Z (flow-direction) component of the velocity of a cell
in a pair has two contributions: (i) the velocity field induced
by the first cell and (ii) the unperturbed shear flow. The first
effect can be well approximated by the quadrupolar flow
field shown in Fig. 5(b). This flow field has a monotonic
algebraic decay (see [51]) as the distance between the
two cells increases. The red curve in Fig. 7 shows the
location where the total (quadrupolar þ imposed shear)
contribution to the Z component of the velocity vanishes in
the (ΔX, ΔZ) plane.
The X (velocity-gradient direction) component of the

velocity of a cell in the pair has two contributions: (i) the
flow induced by the other cell and (ii) the wall-induced
migration across the streamlines. The first contribution has
a complicated form [52], which can be well approximated
by a rapidly-decaying attenuated sine wave (theory in [51]).
The second contribution is proportional to the cell dis-
placement from the midplane (theory in [51]). Equating the
sum of these contributions to zero gives a second relation
between ΔX and ΔZ, shown by the blue curve in Fig. 7.
The intersections of the blue and the red curves in Fig. 7

correspond to the stationary separations of the two cells.
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around a single cell performing TT in the midplane. The cell
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color code shows Col, with X being substituted by Y.

Z0

t=0
.

t=2300
.

Z

X

A

B

4

6

8

10

12

2 3 4 5

Z
0/

R

W/R

Extensible capsule
Vesicle

Capsule
RBC

Simulations

Experiment
Theory

FIG. 6. Equilibrium distance of two cells as a function of gap
width LY ¼ 18R, LZ ¼ 36R for the simulations of capsules and
LY ¼ 12R, LZ ¼ 27R for the simulations of RBCs. Error bars in
the simulation result from the fact that RBCs “swing,” causing
small oscillations of the equilibrium distance. Insets: (a) The
flow field in the shear plane when two capsules form a stable
pair (capsules are shown by black ellipses). LY ¼ LZ ¼ 36R.
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Two such intersections can be identified: The separation
corresponding to point A in Fig. 7 is unstable, as suggested
by the orbits in Fig. 7(a). The separation corresponding to
the point B is stable, as suggested by the orbit in Fig. 7(b).
For weak confinement W=R ≫ 1, we deduce an asymp-

totic scaling law (see [51])

ΔZ0=W ≃ 1.805: ð1Þ

This scaling is universal as it is independent of the details of
the cell structural parameters. Details of the physical nature
of the cell (e.g., reduced volume, elastic properties, etc.), or
its precise shape, show up only in the correction terms [51]
to the main scaling given above. Equation (1) provides a
very good agreement with the full numerical simulation
(Fig. 6). In order to highlight the universal behavior, we
have run other simulations for vesicles (pure phospholipid
membranes) and extensible capsules (see [51]). The equi-
librium distance is shown in Fig. 6, and it agrees well with
the other simulations.
Linear stability analysis shows stability (attraction

along the Y direction) with a spiral trajectory in the

X-Z-plane (two complex eigenvalues), as shown schemati-
cally in Fig. 7(b). The complex nature of the eigenvalues
leads to a spiraling of the trajectory towards the stable fixed
point [Fig. 7(b)].
Conclusions.—Our work highlights the key roles of cell

deformability and shape in the emergence of order. The
analytical theory points to cross-stream migration of the
cells as the driving force of cell-cell pairing and eventual
multi-cell ordering. Our study suggests that the difference
in the structuring ability of healthy (deformable) and
diseased (stiff) RBCs creates a flow signature potentially
exploitable for the detection and analysis of blood diseases
that are accompanied by decreased cell deformability, e.g.,
sickle cell anemia.
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