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Experiments on spin glasses can now make precise measurements of the exponent zðTÞ governing the
growth of glassy domains, while our computational capabilities allow us to make quantitative predictions
for experimental scales. However, experimental and numerical values for zðTÞ have differed. We use new
simulations on the Janus II computer to resolve this discrepancy, finding a time-dependent zðT; twÞ, which
leads to the experimental value through mild extrapolations. Furthermore, theoretical insight is gained by
studying a crossover between the T ¼ Tc and T ¼ 0 fixed points.
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The study of spin glasses (SGs) [1,2] has long been
a key problem in statistical mechanics, providing ideas
that have born fruit in fields as diverse as econophysics,
biology, or optimization in computer science. From a
fundamental point of view, SGs are paradigmatic as the
most approachable model for glassy behavior, both
experimentally and theoretically. However, despite this
relative simplicity, SG experiments and theory have
traditionally developed separately, for practical and con-
ceptual reasons. On the one hand, numerical simulations
were not long enough to reach experimental times, while
experiments were not precise enough or even able to
measure key physical quantities. On the other hand,
experimental samples are perennially out of equilibrium,
while theory mostly focuses on the (unreachable) equi-
librium phase.

In a typical experiment, the system is rapidly cooled to a
subcritical working temperature T < Tc and its off-equi-
librium evolution (aging) studied. As the waiting time tw
increases, the size of the glassy domains is seen to grow as

ξðtwÞ ∝ t1=zðTÞw , with an exponent that is expected to behave
as zðTÞ ≃ zðTcÞTc=T [3]. In traditional experiments [4],
based on the shift of the peak in the relaxation rate SðtwÞ,
zðTÞ was difficult to measure. Fortunately, the availability
of excellent samples with a film geometry has suggested
a new approach to the precision measurement of zc ¼
zðTÞT=Tc [5]. The time that ξðtwÞ needs to saturate to
the film thickness relates to the activation energies Δmax

[6,7]. Varying the film thickness from 9 to 20 nm resulted
in the measurement zc ≈ 9.62 [5], very far from the
value predicted by numerical simulations zc ¼ 6.86ð16Þ
[8], zc ¼ 6.80ð15Þ [9].
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Fortunately, recent theoretical progress makes it feasible
to address the above-mentioned disagreement. A key devel-
opment has been the introduction of the Janus [10,11] and
Janus II [12] computers, which have extended the numerical
exploration of the dynamics almost to the experimental scale
[8,13]. In addition, the introduction of quantitative statics-
dynamics dictionaries (first based on microscopic quantities
[8,14,15] and more recently on experimentally measurable
features [13]) has clarified the relevance of the equilibrium
phase for the off-equilibrium dynamics and showed how to
extrapolate simulations to the experimental scale. Finally,
the (macroscopic) experimental measurement of the size of
glassy domains was shown to be consistent with the
(microscopic) definition based on correlation functions [16].
Here, we resolve the discrepancy in zc by finding a

(very mild) scale dependence in the dynamical exponent
z(T; ξðtwÞ). We first recognize that time should be traded
by length scales. Gentle extrapolations to the relevant
experimental scales of 20 nm [5] then reconcile the
numerical and experimental measurements. Such a com-
putation has been possible only because of new data with
unprecedented precision, achieved by reducing the uncer-
tainty due to thermal fluctuations, an issue that was
typically neglected in previous numerical work. From
the theoretical point of view, our study is based on a
characterization of the crossover between critical and low-
temperature behavior. This is a very important point, since
it resolves a theoretical controversy on how low a temper-
ature must be studied to be free of critical effects, with some
authors choosing to work at very low T at the expense of
the system sizes that it is possible to equilibrate (e.g., [17])
and others trying to find a tradeoff between temperature
and system size (e.g., [14]).
We consider the standard Edwards-Anderson model

[18], defined on a three-dimensional cubic lattice of side
L ¼ 160, on whose nodes we place spins Sx ¼ �1 that
interact with their lattice nearest neighbors through

H ¼ −
X

hx;yi
JxySxSy: ð1Þ

For each disorder realization fJxyg (a sample), each of the
quenched couplings Jxy is �1 with 50% probability. We
shall refer to thin CuMn films [5], where the film thickness
of 20 nm translates to a distance of 38 lattice spacings (the
typical Mn-Mn distance is 5.3 Å).
Our systems are initialized with random orientations for

the spins (representing a very high starting temperature)
and immediately quenched to the working temperature
T < Tc ¼ 1.102ð3Þ [19]. We then follow the evolution
with the waiting time tw (measured in units of full lattice
sweeps) at constant temperature. For each sample fJxyg, we
simulate NR real replicas, evolving with different thermal
noise. We estimate our statistical errors with a jackknife
method [20] (including fit parameters [21]).

Our basic observable is the spatial autocorrelation of the
overlap field (discussed in detail in [22]),

C4ðT; r; twÞ ¼ hqða;bÞðx; twÞqða;bÞðxþ r; twÞiT; ð2Þ

qða;bÞðx; twÞ ¼ SðaÞðx; twÞSðbÞðx; twÞ: ð3Þ

In these equations, the indices ða; bÞ label the different real
replicas; h� � �iT is the average over the thermal noise [in
practice, an average over the ða; bÞ pairs] and ð� � �Þ is the
average over the disorder. In equilibrium simulations, by far
the main source of error are the sample-to-sample fluctua-
tions. Therefore, it has been customary to simulate the
smallest NR that permits definitions such as (2) and
maximize the number NS of samples. Instead, we have
NR ¼ 256 and NS ¼ 16. This choice, motivated to facili-
tate future studies of temperature chaos [23], has proven
crucial: contrary to our expectations, the increase in NR has
produced a dramatic reduction of statistical errors (see the
Supplemental Material, SM, [24]). As a result, we have
been able to follow the decay of C4ðT; r; twÞ over six
decades (see inset to Fig. 1). A similar dramatic error
reduction with high NR has also been seen in studies of the
Gardner transition in structural glasses [25,26].
These correlation functions decay with distance as

C4ðT; r; twÞ ¼ r−θf(r=ξðT; twÞ); ð4Þ

FIG. 1. Growth of the coherence length ξ12ðT; twÞ with the
waiting time tw after a quench to temperature T in a log-log scale
[the critical temperature is Tc ¼ 1.102ð3Þ]. Given the smallness
of the statistical errors, instead of error bars we have plotted two
lines for each T, which enclose the error estimate. At this scale,
the curves seem linear for long times, indicating a power-law
growth but, see Fig. 2, there is actually a measurable curvature.
Inset: Spatial autocorrelation function of the overlap field
C4ðT; r; twÞ, plotted as a function of distance at the last simulated
time for several temperatures. Note the six orders of magnitude in
the vertical axis.
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so the growing ξ can be computed through integral
estimators [8,22]: IkðT; twÞ ¼

R
∞
0 drrkC4ðT; r; twÞ. Then,

ξk;kþ1ðT; twÞ ¼ Ikþ1ðT; twÞ=IkðT; twÞ. As in recent work
[13,16,22,27], we use k ¼ 1 (see [28] for technical
details). The resulting ξ12 is plotted in Fig. 1 for all our
working temperatures. The numerical [8,22,27] and exper-
imental [5] state of the art describes the growth of ξ12 with a
power law,

ξ12ðT; twÞ ≃ AðTÞt1=zðTÞw : ð5Þ

However, with our increased precision, (5) is no longer
a faithful representation of the dynamics. Indeed, if we
switch to x ¼ log ξ12 as the independent variable, we can
interpolate our data as

log twðT; ξ12Þ ¼ c0ðTÞ þ c1ðTÞxþ c2ðTÞx2: ð6Þ

Notice that c2 ¼ 0would reduce to (5), while c2 > 0would
indicate a slowing down of the dynamics for increasing ξ12.
Indeed, see Fig. 2, we find that c2 vanishes only at T ¼ Tc,
with zc ¼ zðT ¼ TcÞ ¼ 6.69ð6Þ [29]. Of course, (6), useful
as an interpolation, is not suitable to extrapolate for longer
times than simulated. In order to do that, we need some
insight from theory [30].
We can gain much insight into the SG phase by

considering the algebraic prefactor in (4), determined by
an exponent θ. At Tc, θ ¼ 1þ η, where η ¼ −0.390ð4Þ
[19] is the anomalous dimension. In the SG phase, there are
differing expectations for θ in the two main theoretical
pictures. The droplet description [31–33] expects coarsen-
ing domains, and therefore, θ ¼ 0. On the other hand, the
replica symmetry breaking (RSB) theory expects space-
filling domains where C4 vanishes at constant r=ξ12 as tw
grows. In particular, θ is given by the replicon, a critical
mode analogous to magnons in Heisenberg ferromagnets
(see [15] for a detailed discussion). The best previous
numerical study of θ [22], found θ ¼ 0.38ð2Þ, with a small

T dependence that was vaguely attributed to the effect of
the critical point.
We can obtain θ by noticing that I2ðT; ξ12Þ ∝ ξ3−θ12 .

However, again we find that while θðTcÞ is compatible with
1þ η, forT < Tc we actually have θðT; ξ12Þ, slowly decreas-
ing as ξ12 increases (or T decreases). This may seem an
unsatisfactory result, since, in the large-ξ12 limit, θðT; ξ12Þ
should tend to a T-independent constant (possibly zero). The
simplest explanation is that low values of ξ12 are affected by
the T ¼ Tc fixed point with θ ≈ 0.61 [an idea supported by
the higher measured θðT; ξ12Þ for the higher T], while for
ξ12 → ∞we should see a crossover to the T ¼ 0 fixed point,
with an unknown θðT ¼ 0Þ (see also [27]).
In analogy with the ferromagnetic phase of the OðNÞ

model, we can model this crossover in terms of a Josephson
length lJ [34]. Close to Tc, this should grow as
lJ ∝ ðTc − TÞ−ν, with ν ¼ 2.56ð4Þ [19], while scaling
corrections are expected for the lowest temperatures
[35]. If this hypothesis is correct, our data for different
temperatures should come together when plotted in terms
of a scaling variable x ¼ lJ=ξ12. We test this scaling in the
inset to Fig. 3, where we consider the ratio ξ23=ξ12 between
two different determinations of the coherence length, which
should be scale invariant in the large-ξ12 limit (different
definitions of ξ all grow at the same rate but differ in a small
constant factor, see Fig. 4 in [22]). As expected, there is an
enveloping curve for the data at different T. In particular,
the curves for T ¼ 0.55, 0.625, 0.7 appear free from the
influence of the critical point.
Similarly, θðT; ξ12Þ ¼ 3 − d log I2=d log ξ12, which we

can compute numerically (see the SM [24]), turns out to be
a function of x, see the collapsing curve in Fig. 3. We are
interested in estimating θðxÞ at the experimentally relevant
scale of ξfilms ¼ 38 for thin films, recall our discussion of
(1). As discussed, the RSB and droplet pictures have
diverging expectations for θð0Þ, that is, for the ξ12 → ∞
limit, so we can use them as upper and lower bounds. In
RSB theory, see SM [24] and Fig. 3, we can compute an
extrapolation to θð0Þ ≈ 0.30, although we take θupper ¼
0.35 as our upper bound for θ. In the droplet description, we
expect θðxÞ ¼ Cxζ, where ζ is, in principle, the stiffness
exponent ζ ≈ 0.24 [36]. As in [14], we find that the droplet
behavior can be reached in the infinite-ξ12 limit but only
with a smaller exponent ζ ≈ 0.15, which, furthermore, is
highly sensitive to the fitting range. Using the droplet
extrapolation for ξfilms ¼ 38, we obtain θðξfilmsÞ ≈ 0.28.
Since our microscopically determined ξ12 may differ by a
small constant factor from a macroscopic measurement of ξ
[16], we have also considered ξfilms ¼ 76, which brings the
exponent down to θðξfilmsÞ ¼ 0.25 (see Fig. 3). In short, as
observed in previous work [14,15], for the experimentally
relevant scale, the physics is well described by a non-
coarsening picture, with 0.25 < θðξfilmsÞ < 0.35 depending
on the theory we use to extrapolate the data and the exact
value chosen for the experimental scale.

FIG. 2. Deviation of ξ12ðtwÞ from a simple power-law growth.
We plot the quadratic parameter c2 in a fit to (6) (see the SM [24]
for fitting parameters). This quantity is zero at the critical point
but has a positive value at low temperatures, indicating that the
growth of ξ12 slows down over the simulated time range.
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As discussed in the Introduction, experiments observe a
constant zðTÞT=Tc ≈ 9.62 [5]. In the previous discussion,
on the other hand, we have found zc ¼ 6.69ð6Þ and a
growing zðT; ξ12Þ. Therefore, in order to compare our
results with experiments, the first step is finding some
way to extrapolate for ξ12 ¼ ξfilms. The most natural
possibility, given the smoothness of the data in Fig. 1, is

to assume that tw ¼ AðTÞξzðT;ξ12Þ12 , with a zðT; ξ12Þ that tends
to a finite z∞ðTÞ when ξ12 → ∞, zðT; ξ12Þ − z∞ðTÞ ∝ ξ−ω12 ,
thus

log tw ¼ DðTÞ þ z∞ðTÞ log ξ12 þ EðTÞξ−ω12 ; ð7Þ

where ω is the exponent that controls finite-ξ12ðtwÞ
corrections. At Tc, we expect ω ¼ 1.12ð10Þ [9,19,27].
For T < Tc, the leading behavior is given by ω ¼ θ
([15] and Sec. 4.2 in [14]). When fitting to (7), in principle,
one must consider possible systematic effects from the
fitting range ξ12 ≥ ξmin

12 and the increased statistical error
due to our uncertainty in the value of θ. However, see SM
[24], these effects have little impact on our final estimates.
An alternative interpretation is to consider a crossover

to activated dynamics, as proposed by the Saclay group

[37,38]. Free-energy barriers are considered from a
dynamical point of view, with a growth exponent Ψ,

log tw ¼ FðTÞ þ zc log ξ12 þGðTÞξΨ12; ð8Þ

hence zðT; ξ12Þ ¼ d log tw=d log ξ12 ¼ zc þ GðTÞΨξΨ12.
Equation (8) is a refinement of droplet theory [33] and
has been used before in experiments [39] and simulations
[40] with values of Ψ ≈ 1 [41]. RSB theory is neutral with
respect to choosing Ansätze (7) or (8). We recall the
numerical result in infinite dimensions [42] of τ ∼
expð−NbÞ for the timescales associated with the largest
energy barriers, with b ≈ 1=3 (see also [43,44]). This result
can be connected with finite D at the upper critical
dimensions Du ¼ 6, which yields ΨðDuÞ ¼ 6b. We note,
in particular, that (7) can be regarded as a Ψ → 0 limit of
(8). With previous data, it was not possible to distinguish
the behavior of (8) and that of a simple power law [22].
With the present simulations, we find that (8) also yields
good fits for twðξ12Þ, with Ψ ≈ 0.4 (again, the dependence
on the fitting range is minimal, see SM [24]).
Therefore, both (7) and (8) can explain the behavior of

the data for the simulated scales. In order to see whether
they are useful to explain the experiments, we consider the
quantity ZcðTÞ ¼ zðT; ξfilmsÞT=Tc, where zðT; ξfilmsÞ is the
derivative of either (7) or (8) at ξfilms. The result is plotted in
Fig. 4 (see SM [24] for the full fit parameters). Remarkably,
the convergent Ansatz of (7) produces an almost constant

FIG. 4. Value of the experimental aging rate for SGs
ZcðTÞ ¼ zðT; ξfilmsÞT=Tc, extrapolated from our data for values
of the coherence length corresponding to thin CuMn films. The
main plot considers an Ansatz (7) with a finite zðT; ξ12 → ∞Þ,
which agrees very well with the experimental value of ZcðTÞ ≈
9.62 [5], indicated by the straight line, whose width represents the
experimental temperature range. Notice that critical effects are
only visible for T > 0.7. Inset: Same plot but now considering a
crossover to activated dynamics (8), as in [37]. This is less
successful at reproducing the roughly constant ZcðTÞ observed in
experiments.

FIG. 3. Crossover between the T ¼ Tc and the T ¼ 0 fixed
points controlled by a Josephson length lJðTÞ, with lJðTÞ ∝
ðTc − TÞ−ν close to Tc see text). The relevant scaling variable is
x ¼ lJðTÞ=ξ12. The inset considers the ratio ξ23=ξ12 between two
definitions of the coherence length, which should be constant in
the large-ξ12 (or x → 0) limit. For T close to Tc, this ratio initially
grows, approaching the T ¼ Tc value (represented by the thick
gray line) and eventually relaxes towards the T ¼ 0 fixed point.
Main plot: Evolution of the replicon exponent θ for several
temperatures. We show two possible extrapolations to infinite ξ12:
one with finite θ, as expected in the RSB picture, and one with
θ ¼ 0, as expected in the droplet picture. For the latter, we also
show the extrapolated value for the experimental scale corre-
sponding to experiments in CuMn films [5], which we estimate
between ξ12 ¼ 38 and ξ12 ¼ 76.
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Zc in a wide T range, which additionally fits well the
experimental value of Zc ≈ 9.62. The activated dynamics
of (8), on the other hand, are not a good fit for the
experimental behavior (inset to Fig. 4).
Using simulations for very large systems with many

replicas on Janus II, we have found that the growth of the
SG coherence length is controlled by a time-dependent
z(T; ξðtwÞ) exponent. After describing the dynamics as
governed by a crossover between a critical and a low-
temperature fixed point, we have been able to model this
growth quantitatively and to extrapolate to experimental
length scales. The resulting exponent is consistent with the
most recent experimental measurements for power-law
dynamics. In addition, we find clear evidence of non-
coarsening dynamics at the experimental scale and find that
temperatures T ≲ 0.7 are free of critical effects and there-
fore safe for numerical studies of the SG phase.
An open question concerns the generality of these results.

Indeed, CuMn is a Heisenberg, rather than Ising, SG.
However, even the purest Heisenberg system has unavoid-
able anisotropies, such as Dzyaloshinsky-Moriya inter-
actions [45]. These interactions, though tiny, extend over
dozens of lattice spacings, which magnifies their effect. In
fact, we know that Ising is the ruling universality class in the
presence of coupling anisotropies [46]. We also remark that
high-quality measurements on GeMn are excellently fit with
Ising scaling laws [7]. Our results also match the most recent
and accurate measurements on CuMn [5].
More generally, this study is a clear demonstration of the

importance of high-precision results for the investigation of
glassiness. Indeed, reducing the errors has shown that the
aging rate slows down during the dynamics, contrary to
previous findings. A similar change of paradigm might
happen for structural glasses.
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