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Elementary band representations are the fundamental building blocks of atomic limit band structures.
They have the defining property that at partial filling they cannot be both gapped and trivial. Here, we give
two examples—one each in a symmorphic and a nonsymmorphic space group—of elementary band
representations realized with an energy gap. In doing so, we explicitly construct a counterexample to a
claim by Michel and Zak that single-valued elementary band representations in nonsymmorphic space
groups with time-reversal symmetry are connected. For each example, we construct a topological invariant
to explicitly demonstrate that the valence bands are nontrivial. We discover a new topological invariant: a
movable but unremovable Dirac cone in the “Wilson Hamiltonian” and a bent-Z2 index.
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The theory of topological quantum chemistry introduced
in Ref. [1] diagnoses topological phases based on elemen-
tary band representations. A set of bands is topological if it
lacks an “atomic limit” that obeys the crystal symmetry
(and time reversal, if desired): formally, an atomic limit
exhibits a set of localized, symmetric Wannier functions
[1–7]. This definition includes all known topological
insulating phases [8–18]. We showed in Refs. [1,2] that
each atomic limit defines a “band representation,” which is
a representation of the full space group. The irreducible
representations (irreps) of the little group at each point in
the Brillouin zone are completely determined for each band
representation [19–21]. However, the little group irreps do
not define the band representation: two groups of bands can
exhibit the same little group irreps but differ by a Berry
phase [2,22–24].
If a set of bands, separated by an energy gap from all

other bands, does not transform as a band representation, it
does not have localized, symmetric Wannier functions;
consequently, it is topological [1,2]. An “elementary” band
representation (EBR) is not equivalent to a sum of two band
representations. It follows that a disconnected (gapped)
elementary band representation must realize a set of topo-
logical bands [1–3]. Such disconnected EBRs will be
the focus of this Letter. All EBRs and their irreps at

high-symmetry points in the Brillouin zone can be found on
the Bilbao Crystallographic Server [1,25–30].
The theory of topological quantum chemistry also brings

to light the different types of trivial-to-topological phase
transitions, distinguished by how many symmetry-distinct
orbitals contribute to the topological bands. For example,
the Kane-Mele model of graphene [8] requires only one
type of symmetry-distinct orbital (the two spinful pz
orbitals per unit cell are related by the honeycomb lattice
symmetry), while the trivial-to-topological transition in
HgTe [13] requires both s and p orbitals to create a “band
inversion.” These two types of topological insulators differ
in their atomic limit as the distance between atoms is taken
to infinity: in the atomic limit of graphene, the band
structure consists of a single flat and fourfold degenerate
band, corresponding to a single EBR. In contrast, in HgTe,
the atomic limit will consist of two flatbands, one each for
the s and p orbitals, corresponding to two distinct EBRs.
In this Letter, we will focus on the graphenelike case:

topological insulators that derive from a single orbital and
its symmetry-related partners. In the language of band
representations, the conduction and valence bands together
transform as a single EBR; consequently, either the con-
duction or valence bands (or both) lack an atomic limit and
are topological [1–3].
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We introduce models in a symmorphic and a non-
symmorphic space group. The symmorphic example
describes px;y orbitals on the honeycomb lattice. Without
spin-orbit coupling (SOC), the band structure can be a
(gapped) topological crystalline insulator (TCI). With
infinitesimal SOC and time-reversal symmetry, the system
exhibits a nontrivial Z2 index.
We were motivated to explore the nonsymmorphic

example because, as part of their ground-breaking work
on the connectivity of energy bands, Michel and Zak con-
jectured that spinless EBRs in nonsymmorphic space
groups cannot realize a gapped band structure [31,32].
In Ref. [26], we explained where the proof of Michel and
Zak fails. Here, we pick a particular nonsymmorphic
space group, P4232, and construct a tight-binding model
to explicitly show its gapped, topological nature. In doing
so, we find a novel feature: the two-dimensional “Wilson
Hamiltonian” exhibits a topologically protected band
crossing.
In each example, we derive a bulk topological invariant.

An essential tool is the “kk-directed” Wilson loop, which
describes the parallel transport of an isolated set of bands
[4,17,33–42]:

Wðk⊥;k0Þ ≡ Pe
i
R

k0þ2π

k0
dkkAkðk⊥;kkÞ; ð1Þ

where P indicates that the integral is path ordered and
AkðkÞij ¼ ihuiðkÞj∂kkujðkÞi is a matrix whose rows and
columns correspond to each eigenstate in the isolated set
of bands. The eigenvalues of W are gauge invariant and of
the form eiθðk⊥Þ, independent of the “base point” k0 [40]. A
quantized invariant derived from the Wilson loop is
invariant under any deformation of the Hamiltonian that
preserves the gap in the spectrum.
Spinless TCI on the honeycomb lattice.—We start with

spinless px;y orbitals on the honeycomb lattice, described
by the nearest-neighbor Hamiltonian [43]:

H0
k ¼

�
0 hk
h†k 0

�

; ð2Þ

where nonzero blocks mix the A and B sublattices and

hk ¼ 1

2
ðe−ik·δ1 þ e−ik·δ2 þ e−ik·δ3Þðtσ þ tπÞI

þ 1

2

�

e−ik·δ1 −
1

2
e−ik·δ2 −

1

2
e−ik·δ3

�

ðtσ − tπÞσz

þ
ffiffiffi
3

p

4
ðe−ik·δ2 − e−ik·δ3Þðtσ − tπÞσx: ð3Þ

The Pauli matrices σx;y;z act in the px;y subspace, tσ;π
parametrize σ and π bond strengths, and δ1;2;3 are the
nearest-neighbor vectors [see Fig. 1(a)]. Previously this
model with tπ ¼ 0 was studied for its flatbands [44,45].

The spectrum of H0
k is shown in Fig. 1(b). The degener-

acies at K ≡ 2
3
g1 þ 1

3
g2 and Γ are symmetry required [46].

To open a gap, we add the following next-nearest
neighbor hopping term, which preserves the crystal sym-
metries of the honeycomb lattice [47]:

H1
k¼ sin

�
1

2
k ·e1

�

sin

�
1

2
k ·e2

�

sin

�
1

2
k ·ðe1−e2Þ

�

τz⊗σy;

ð4Þ

where the matrices τi act in the sublattice subspace. The term
in Eq. (4) changes the energy ordering of the bands at K,
while preserving the twofold degeneracy. For large enough
jxj, H0

k þ xH1
k can be gapped, as in Fig. 1(c); see Sec. S1 A

in Supplemental Material [47] for a phase diagram.
The spectrum in Fig. 1(c) represents a disconnected EBR

[1,2]. We construct a nontrivial bulk topological invariant
from the g1-directed Wilson loop of the lower two bands.
Its eigenvalues are shown in Fig. 1(d) as a function of the
base point. When the base point is Γ orM, the Wilson loop
eigenvalues (−1 and þ1, respectively [47]) are completely
determined by the C2z eigenvalues [38,42] (the C2z
operator is −τx ⊗ σ0 [48]). This forces the “Wilson bands”
to wind in opposite directions. The quantized eigenvalues at
Γ andM prevent the Wilson spectrum from being smoothly
deformed to flat, which indicates that the valence bands are
topologically nontrivial.
The Wilson loop winding requires that both occupied

bands of H0
k þ xH1

k at Γ have the same C2z eigenvalue, η,
and that both occupied bands atM have the C2z eigenvalue,
−η. Consider the Wilson loop of three bands: the two
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FIG. 1. (a) Lattice (e1;2) and reciprocal lattice (g1;2) basis
vectors. The dotted arrows (δ1;2;3) indicate the vectors between
nearest neighbor sites. A and B indicate the sublattices. (b) Spec-
trum of H0

k with tσ ¼ 1, tπ ¼ −0.5. (c) Gapped band structure of
H0

k þ xH1
k with tσ ¼ 0.8, tπ ¼ 1.0, x ¼ 0.6, and (d) the argument

of its Wilson loop eigenvalues.
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occupied bands and a third, trivial, band, not in our model.
If the C2z eigenvalues of the third band at Γ andM are both
equal to η, then the eigenvalues of the three-band Wilson
loop will not be quantized at M and it will fail to wind.
Thus, the topological invariant is not stable to adding a third
band to the projector (although the winding of the projector
onto two bands is invariant under adding a third band as
long as the gap between the third band and the existing
bands does not close). The existence of a topological
invariant that depends on the number of bands is reminis-
cent of the “Hopf insulator” [49].
Spinful topological phases.—We now consider SOC.

Spinful px;y orbitals decompose into three irreps of the site-
symmetry group. Bands derived from these three irreps
transform as a sum of three EBRs [1,2], which generically
split into four sets of disconnected bands, as in Figs. 2(a)
and 2(b). At least one set of disconnected bands is either an
obstructed atomic limit—it can be adiabatically deformed
to a Hamiltonian composed of orbitals that reside at the
center of the hexagon rather than the corners—or a
topological band that does not have any atomic limit [50].
If time-reversal symmetry is enforced, we can consider

the Z2 index. For small spin-conserving SOC that does not
invert the bands at Γ or M, the C2z eigenvalues in the
spinless phase determine the Z2 index of each set of bands
(conserving spin amounts to enforcing inversion sym-
metry). Our simple, but physically motivated, model yields
two phases, shown in Fig. 2: either all three or the first and
third gaps are Z2 topological, while the middle gap is not;

there is no phase in which all gaps are Z2 trivial [51]. We
show in Sec. S1 C of Ref. [51] that only spin-conserving
SOC can open a gap in the spinless band structure; hence,
if non-spin-conserving SOC is present and does not invert
any bands, it will alter the band structure but not change the
Z2 index.
Material realization.—The spinless semimetallic model

H0
k consists of nearest-neighbor Slater-Koster [52] terms;

thus, it is widely applicable to two-dimensional planar
honeycomb systems. To exhibit the TCI phase, the next-
nearest neighbor term H1

k must be dominant in order to
open a gap. The relative strength of the hopping terms
varies with strain or buckling.
The nontrivial Z2 phases will be present whenever SOC

is large enough to open an observable gap, but not so large
to invert the bands at Γ and M. In particular, H0

k with SOC
describes bismuth grown on a SiC substrate, consistent
with the topological edge states reported in Ref. [53].
Nonsymmorphic gapped EBR.—We now consider the

nonsymmorphic simple cubic space group P4232, which is
generated by fC2xj0g, fC3;111j0g, and fC2;110j 12 12 12g. We
also enforce time-reversal symmetry. We consider atoms
sitting at (0,0,0) and ð1

2
; 1
2
; 1
2
Þ [inset of Fig. 3(a)], which

together comprise the 2a Wyckoff position, each with
spinless dz2 and dx2−y2 orbitals, which together form a time-
reversal symmetric irrep of the site-symmetry group
[54,55]. Since the orbitals transform as an irrep of a
maximal Wyckoff position, any band structure derived
from these orbitals transforms as a time-reversal invariant
EBR. It follows from Ref. [2] that if the band structure is
gapped, it contains topological bands. Here, we explicitly
construct a gapped Hamiltonian and a nontrivial bulk
topological invariant, violating the conjecture [31,32] that
a single set of symmetry-related orbitals in a nonsymmor-
phic space group always yields a gapless band structure.
We consider the following Hamiltonian, which respects

all space group symmetries and time reversal [56]:
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FIG. 2. Band structures with an on-site L · S term for (a),(b)
periodic and (c),(d) slab boundary conditions. This SOC term
preserves inversion symmetry, such that all bands remain doubly
degenerate, but is general enough to open all possible gaps in the
band structure. In (a) only the lowest and highest bands have a
nontrivial Z2 index and hence the slab boundary conditions in
(c) reveal edge states in all three gaps. In (b) all four bands have a
nontrivial Z2 index and hence the slab boundary conditions in
(d) reveal edge states in only the upper and lower gaps. The inset
in (d) resolves the avoided crossing at E ¼ 0.
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FIG. 3. (a) Spectrum of Hk þH1
k with t1 ¼ 0.2, t2 ¼ 0.3,

t3 ¼ 0.1, t4 ¼ 0.08, t5 ¼ 0.05, t6 ¼ 0.02. Inset shows unit cell:
orbitals on the blue atoms enter the Hamiltonian, while the white
or black atoms create a crystal field with the symmetry of P4232.
(b) Argument of the eigenvalues of the z-directed Wilson matrix
along the path M̄ − Γ̄ − M̄0 (blue dotted line in inset);
M̄ ¼ ðπ; πÞ, Γ̄ ¼ ð0; 0Þ, M̄0 ¼ ð−π; πÞ.
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Hk ¼ t1f1ðkÞτx ⊗ σ0 þ t2f2ðkÞτy ⊗ σ0

þ t3ðg1ðkÞτz ⊗ σz þ g2ðkÞτz ⊗ σxÞ; ð5Þ

where f1ðkÞ¼
P

icosðk·δiÞ, f2ðkÞ¼
P

isinðk·δiÞ, g1ðkÞ¼
coskx−cosky, g2ðkÞ¼ ðcoskxþ cosky−2coskzÞ=

ffiffiffi
3

p
, and

δ1;2;3;4 are vectors to nearest neighbors, shown in Fig. 3(a).
The band structure is doubly degenerate and gapped when
t1;2;3 ≠ 0. To eliminate the extra degeneracies, we add the
symmetry-preserving term

H1
k ¼ t4f1ðkÞτy ⊗ σy þ t5τ0 ⊗ ½g2ðkÞσz − g1ðkÞσx�

þ t6g3ðkÞτz ⊗ σ0; ð6Þ

where

g3ðkÞ ¼ cosð2kxÞ cosðkyÞ − cosð2kyÞ cosðkxÞ þ perm; ð7Þ

and “þ perm” indicates terms obtained by permuting
kx → ky → kz. The spectrum of Hk þH1

k is shown in
Fig. 3(a). Since Hk is fully gapped when t1;2;3 ≠ 0, Hk þ
H1

k is gapped when t4;5;6 are small compared to t1;2;3.
This gapped phase realizes a disconnected and time-

reversal symmetric EBR; thus, it contains topological
bands. We diagnose the topological phase by the winding
of its z-directed Wilson loop along the bent path shown in
Fig. 3(b). This is a time-reversal symmetric and non-
symmorphic generalization of the “bent Chern number”
introduced in Ref. [57]. Two features are necessary for this
loop to wind: first, the Wilson loop eigenvalues are pinned
to �1 at Γ̄ and M̄, and, second, there are protected band
crossings in the Wilson spectrum along the jkxj ¼ jkyj
lines. Combined, these features prevent the Wilson bands
from being smoothly deformable to flatbands; hence, the
phase is topological.
We now explain the origin of these features: first, C2x

symmetry forces the eigenvalues ofWðΓ̄;0Þ andWðM̄;0Þ to be
real, while the fC2;110j 12 12 12g screw symmetry forces them to
come in pairs ðλ;−λ�Þ [58]. This combination pins the
eigenvalues of Wðkx;ky;0Þ to be �1 at Γ̄ and M̄.
The Wilson band crossing is subtle: the fC2;110j 12 12 12g

screw symmetry requires the eigenvalues of Wðk;k;0Þ to
come in pairs ðλ;−λ�Þ. Combined with the antiunitary
symmetry T fC2;110j 12 12 12g−1C2z, which leaves points
ðk; k; kzÞ invariant, the Wilson matrix must take the form
Wðk;k;0Þ ¼ ieiaxðkÞσxþiayðkÞσy , where, importantly, axðkÞ ∝
ayðkÞ [alternately, the symmetries permit the eigenvalues
of Wðk;k;0Þ to be fixed to �1; see Sec. S3 B]. Then
degeneracies of the Wilson eigenvalues, which occur when
axðkÞ ¼ ayðkÞ ¼ 0, are not fine-tuned, since the symmetry
forced axðkÞ ∝ ayðkÞ. Since the eigenvalues of Wðk;k;0Þ at
k ¼ 0 and k ¼ π are fixed to þ1 and −1, an odd number of
linear degeneracies between Γ̄ and M̄ cannot be removed

without closing the bulk band gap. Thus, the parity of the
number of linear degeneracies is a topological invariant.
The band crossing forms a Dirac cone in the two-

dimensional Wilson Hamiltonian [40]. The Dirac point
is revealed by the Berry phase w acquired by an eigenstate
ofWðkx;ky;0Þ as it traverses the path γ around the Dirac point.
The Berry phase of Wilson loop eigenstates was introduced
in Ref. [41]. Since w is quantized to �1 (see Sec. S4), it
constitutes a topological invariant. In our model, for several
values of parameters, we have numerically computed the
nontrivial value, w ¼ −1.
When SOC is present, the spinful dz2 and dx2−y2 orbitals

transformas spin-3
2
orbitals,which induce an eight-band time-

reversal symmetric EBR [27]. When the EBR is gapped, the
valence (or conduction) bands must be topological.
Weak symmetry indicators.—In both the spinless TCI on

the honeycomb lattice and the nonsymmorphic gapped
EBR, the valence bands are topological, but have the
property that the irreps at high-symmetry points can be
written as a “difference” of the irreps in two other EBRs
[59]. Because the irreps can be written as a difference,
classification schemes [60] that treat the little group irreps
as a vector space will identify the valence bands as trivial,
even though they lack an atomic limit. However, unless an
energy gap closes to the valence bands, the winding of the
Wilson loop in both examples provides a robust and
quantized topological invariant that is, in principle, physi-
cally observable [42,61,62].
This distinction warrants a refined characterization of

topological crystalline bands based on whether their
topological nature can be deduced by their little group
irreps. We label the symmetry properties of topological
bands as strong if their little group irreps are not equal to a
linear combination of little group irreps corresponding to
EBRs and weak if their little group irreps are equal to a
difference (but not a sum) of irreps in EBRs. Strong
symmetry properties implies a stable topological index;
however, the converse is not true: for example, bands with a
nontrivial Z2 index under time-reversal symmetry can be
strong [10] or weak [1]. This usage of weak and strong
symmetry is different than the current distinction between
weak and strong topological insulators [10]. It is more
suitable for the refined classification of topological insula-
tors with crystal symmetries.
Conclusions.—We have constructed tight-binding mod-

els to realize the insulating phases of two gapped EBRs. We
explicitly showed that the valence bands have a nontrivial
topological invariant. In doing so, we found a new
topological invariant in a nonsymmorphic space group: a
Dirac cone in the Wilson loop spectrum and a Wilson loop
that winds along a bent path. This motivates further study
of the gapped EBRs in other nonsymmorphic space groups.
In addition, we introduced the notion of a weak symmetry
indicator. We postpone a general investigation of the
symmetry properties of gapped EBRs to future work.
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