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We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and
2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay
between the two-color pulses allows control of the harmonic positions, both those allowed by angular
momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular
harmonic is tunable from left to right circular without changing the driving pulse helicity. The highest
HHG yield occurs for a time delay comparable to the fundamental period T ¼ 2π=ω.
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High-order harmonic generation (HHG) in a laser field
composed of two counterrotating, circularly polarized laser
beams with frequencies ω and 2ω was pioneered in
Refs. [1,2]. Even though neither circularly polarized field
supports harmonic generation on its own, combining them
in a counterrotating configuration leads to very efficient
harmonic emission because ionized electrons undergo
field-driven oscillations that return them to the parent
ion. This field configuration offers a robust method to
generate extreme ultraviolet light with high and tunable
ellipticity (see, e.g., Refs. [1–16]), enabling tabletop studies
of chiral-sensitive light-matter interactions in both gas and
condensed phase [6,8,10,17–21].
For counterrotating bicircular driving pulses, the angular

momentum selection rules in spherically symmetric media
dictate that the allowed harmonics must have orders 3N þ 1
and 3N þ 2, while the 3N harmonics are forbidden for a
long bicircular laser pulse. Orders 3N þ 1 (respectively,
3N þ 2) correspond to the net absorption of N þ 1 (N) ω
photons and N (N þ 1) 2ω photons. Reemission of the
absorbed photons as a harmonic occurs by radiative
recombination to the initial ground state [4], with the
emission corotating with the ω (2ω) field. Orders 3N
correspond to net absorption of N 2ω photons and N ω
photons, so that the excited electron state has the same
parity as the initial state. Thus, recombination by harmonic
emission in this case is forbidden.
In this Letter, we show how these simple rules are

modified when time-delayed, few-cycle driving pulses are
employed. Our theoretical results, obtained both analyti-
cally and numerically by solving the 3D time-dependent

Schrödinger equation (TDSE), are for laser pulses with
fundamental wavelength λ ¼ 2πc=ω ¼ 1.6 μm and inten-
sity 1014 W=cm2. First, we show that for certain time
delays between the two driving pulses, the harmonic
spectra may be dominated by the “forbidden” 3N orders
with nearly linear polarization. Second, for any given
emission frequency we show that one can tune the helicity
of the emitted light from nearly circular (right or left) to
linear without changing the helicity of the driving laser
pulses but by simply tuning the two-color time delay. Third,
our theoretical analysis of harmonic emission driven by two
few-cycle, time-delayed pulses shows the surprising result
that the HHG yield is largest for nonzero time delays.
Unintuitively, we find the HHG yield increases by an order
of magnitude when the two pulses are substantially delayed
and relate this phenomenon to the strong dependence of
tunneling ionization by a bicircular pulse on the time delay.
Fourth, even when the two driving pulses barely overlap,
electrons liberated by a leading 2ω pulse can be driven back
to the core by the trailing ω pulse. The different impacts of
the ω and 2ω fields on the electron dynamics lead to
asymmetric dependence of the harmonic emission on the
two-pulse delay time.
To exclude any dc components, our bicircular field

FðtÞ is defined via an integral of the vector potential AðtÞ:
Z

t
AðτÞdτ¼RðtÞ; RðtÞ¼R1ðtÞþR2ðt−T Þ;

Ri ¼
cF
ω2
i
e−2 ln2ðt2=τ2i Þðex cosωitþηiey sinωitÞ; i¼ 1;2;

ð1Þ
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where AðtÞ and FðtÞ ¼ −∂AðtÞ=ðc∂tÞ can be found by
differentiation (here c is the speed of light), F is the field
strength, ω1 ¼ ω, ω2 ¼ 2ω, ηi is the ellipticity of the ith
component (η1 ¼ −η2 ¼ 1), and τi ¼ 2πNi=ω is the dura-
tion of the ith pulse (full width at half maximum in the
intensity), which is measured by the number of cyclesNi of
the fundamental field. Finally, T is the time delay between
the two pulses, with negative T corresponding to the 2ω
pulse arriving earlier.
The TDSE was solved numerically for the one-electron

potential [expressed in atomic units (a.u.)],

UðrÞ ¼ −
QðrÞ
r

¼ −
1

r
½tanhðr=aÞ þ ðr=bÞsech2ðr=aÞ�;

where a ¼ 0.3 and b ¼ 0.461, using the method described
in Refs. [22,23]. This potential provides a good approxi-
mation for the hydrogenic spectrum and smooths the
singularity at the origin. This is advantageous for obtaining
converged numerical simulations for this wavelength and
intensity. However, since numerical simulations become
very time consuming for long wavelengths, an analytical
model approach becomes increasingly necessary.
The analytical theory takes advantage of the tunneling

interaction regime in mid-IR fields. In general, the harmonic
response can be described in terms of quantum trajectories
that obey the classical equations ofmotion but leave the atom
at complex ionization times t̃0j and return at complex
recombination times t̃j, where j labels the trajectory (see,
e.g., Refs. [24–26]). In the tunneling regime, where the
imaginary part of t̃0j is small, γ ¼ Imωt̃0j ≪ 1, one can
express the emission at frequency Ω via real ionization
(t0j) and return (tj) times. These times obey the following
equations [27]:

K0
j · _K

0
j þ Δ0

j ¼ 0; K0
j ¼ Aðt0jÞ=cþ pðt0j; tjÞ; ð2aÞ

K2
j þ Δj ¼ 2ðΩ − IpÞ; Kj ¼ AðtjÞ=cþ pðt0j; tjÞ; ð2bÞ

pðt0j; tjÞ ¼ −
Z

tj

t0j

AðtÞdt=½cðtj − t0jÞ�;

where Ip is the ionization potential and _K0
j ≡ ∂K0

j=∂t0j. The
quantum corrections in Eq. (2), Δ0

j and Δj, account for the
complex-valued parts of the quantum trajectory and are given
by the expressions

Δ0
j ¼ −

1

6

�
ϰj
F j

�
2

⃛K02
j ; Δj ¼

�
ϰj
F j

�
2 ∂2K0

j
2

∂t0j∂tj ;

where

ϰj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þK02

j

q
; F j ¼

ffiffiffiffiffiffiffiffi
K̈02

j

q
; κ ¼ ffiffiffiffiffiffiffi

2Ip
p

;

and K̈02
j ,

⃛K02
j are second and third derivatives of K02

j in t0j,
respectively. Neglecting the quantum corrections, Eq. (2a)
ensures that at t0j the electron hasminimal kinetic energy, and
Eq. (2b) ensures that the energy gained is converted into a
photon of energy Ω upon radiative recombination to the
initial bound state with energy −Ip.
For each trajectory j, the contribution dj to the total

induced dipole at a frequency Ω can be written in the
factorized form

dj ¼ drecðΩÞPðtjÞWjeiSjPðt0jÞI jðt0jÞ: ð3Þ

In Eq. (3), the ionization amplitude I jðt0jÞ describes the
tunneling step of HHG [28] in the adiabatic approximation
(see, e.g., Ref. [29]); the propagation factor Wj is

Wj ¼ ½Δt3=2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kj · _Kj

q
�−1; ð4Þ

where Δtj ¼ tj − t0j and _Kj ≡ ∂Kj=∂tj; the exact recom-
bination dipole is drecðΩÞ ¼ kjfrecðΩÞ (kj ¼ Kj=jKjj),
calculated for the real-valued electron momentumKj at the
real-valued return time tj; and the phase Sj is

Sj ¼ Ωtj −
Z

tj

t0j

�
1

2
½pðt0j; tjÞ þAðξÞ�2 þ Ip

�
dξ: ð5Þ

Finally, the factors Pðt0jÞ, PðtjÞ account for ground state
depletion at the ionization and recombination times,

PðtÞ ¼ exp

�
−
1

2

Z
t

−∞
Γ½jFðt0Þj�dt0

�
; ð6Þ

where ΓðjFðtÞjÞ is the tunneling rate in the instantaneous
electric field jFðtÞj. Since the peak fields may approach the
barrier suppression field Fb ¼ κ4=ð16ZÞ, we use for Γ
the empirical formula of Ref. [30], which differs from the
standard tunneling formula of Smirnov and Chibisov [31]
by a factor exp½−βðZ2=IpÞðF=κ3Þ�, where β ¼ 5.6 is a
fitting parameter and Z ¼ 1 is the core charge.
The numerical TDSE results and the analytic theory

results for the harmonic spectrum and the degree of circular
polarization [32] for T ¼ 0 are compared in Figs. 1(a) and
1(b), demonstrating excellent agreement for the higher
energy parts of the HHG spectra. Discrepancies are found
only for low harmonics with Ω < up ¼ F2=ð4ω2Þ (not
shown in Fig. 1), i.e., for very short trajectories, where the
adiabatic three-step picture appears to fail.
Note that the harmonic spectrum in Fig. 1(a) does not

show the usual spectral structure characteristic of an
ω − 2ω counterrotating bicircular field, with allowed har-
monic pairs 3N þ 1 and 3N þ 2 and missing (forbidden)
3N harmonics for each integer N. Instead, we see an
oscillation pattern typical of the interference of two
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emission bursts, suggesting a simple means to control both
the spectra and the ellipticities of the harmonics.
The short duration of our two-color, counterrotating laser

pulses results in a kind of ionization gating that favors only
two ionization trajectories for harmonic emission (i.e., only
two partial dj contribute significantly). Consequently, a
model of two emitting dipoles, discussed below, is suitable
for the physical interpretation of our results. Let a harmonic
frequency Ω be generated by two dipoles, d1e−iΩt and
d2e−iðΩtþΦÞ, where d1 and d2 are real vectors andΦ is their
relative phase. While each individual dipole emits linearly
polarized light, their superposition does not. If α is the
physical angle between the two dipoles, then the degree of
circular polarization ξ of the emitted radiation is given by
(see Ref. [32])

ξ ¼ −
sin α sinΦ

δþ cos α cosΦ
; δ ¼ d21 þ d22

2d1d2
: ð7Þ

Equation (7) shows that ξ can be varied in the range
ð−1=δ; 1=δÞ by varying the relative phase Φ between the
two dipoles, with full control of ξ available for δ ≃ 1. For a
bicircular driving field, the relative phaseΦ is controlled by
changing the time delay between the two driving colors,
which controls the electron trajectories responsible for a
given emission frequency.
The oscillation patterns in Fig. 1(b) confirm this analysis.

The phase between the two dipoles in Eq. (7) is
Φ ¼ S1 − S2, and α is the angle between the vectors K1

and K2—the electron velocities for the two dominant
recombination events. For the bicircular field, α ≃ 120°
or 2π=3. For δ ¼ 1, circularly polarized light is emitted for
Φ ¼ π � α, with “þ” for ξ ¼ þ1 and “−” for ξ ¼ −1.
Since Φ is of the order F2=ω3 ≫ 1, it results in a rapid

oscillation pattern in ξðΩÞ between the maximum and
minimum values, as seen in Fig. 1(b). On the other hand,
for α ≃ 2π=3, the maxima of the total harmonic yield occur
for Φ ¼ S1 − S2 ¼ π þ 2πν (for integer ν); i.e., the inter-
ference peaks in the total yield are offset from the maxima
in ξ, as shown in Figs. 1 and 2.
This simple physical model indicates the possibility of

controlling the HHG spectrum and the harmonic elliptic-
ities: e.g., two dominant emission bursts separated by
approximately one-third of an optical cycle may yield a
region of the HHG spectrum with single peaks at 3Nω [33],
in stark contrast with the usual HHG spectrum for a
bicircular field. Using the analytic approach, this result
is shown in Fig. 2 for a time delay between the two pulses
of T ¼ −T. However, as the time between successive
emission bursts is only approximately T=3, we observe
some shifts in the positions of interference maxima and
degrees of circular polarization. Thus, for a pulsed bicir-
cular field, 3Nω peaks with nearly linear polarization can
be observed only in particular ranges of harmonic energies
(e.g., 114 ≤ Ω=ω ≤ 120 in Fig. 2); also, “allowed” 3N þ 1
harmonics with linear (instead of circular) polarization can
be observed (e.g., Ω=ω ¼ 130 in Fig. 2).
For any Ω (or return electron energy E ¼ Ω − Ip), the

analytic theory can trace the main contributing closed
electron trajectories given by Eq. (2). They are described
by the classical equations of motion, except that the real-
valued ionization and recombination times include quantum
corrections. In Fig. 3 we present the dependence of the
electron return energy E in units of up ¼ F2=4ω2,
ε ¼ E=up, as a function of the ionization time t0j and the
travel time Δtj. The gradually changing colors along the
steeply sloped curves in Fig. 3 indicate the relative contri-
bution of the classical trajectory at each t0j, which is governed
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FIG. 1. Comparison of TDSE results (thin black lines) with
results of the analytical adiabatic approach (thin red lines) for
the HHG spectral yield (HHGY) (top) and harmonic degree of
circular polarization (DCP) ξ (bottom) for a counterrotatingω − 2ω
bicircular field (1) with fundamental wavelength λ≡ 2πc=
ω ¼ 1.6 μm. Calculations were done for the H atom for zero
time delay (T ¼ 0) between two-color three-cycle pulses
(N1 ¼ N2 ¼ 3), each having a peak field strength F ¼
0.0534 a:u: (or an intensity I ¼ 1014 W=cm2).
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FIG. 2. Time-delay control of the HHG spectrum: (a) harmonic
yield; (b) degree of circular polarization ξ. The spectrum contains
almost exclusively linearly polarized “forbidden” 3N harmonics
(see H114, H117, H120) and an “allowed” 3N þ 1 harmonic
(H130). Results are for the H atom and the bicircular field (1) with
intensity I ¼ 1014 W=cm2 for each component, N1 ¼ N2 ¼ 2,
T ¼ −2π=ω, and λ ¼ 1.6 μm.
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by the ionization factorI j. (The dependence of the ionization
factor on the recombination time is given in Ref. [33].)
In contrast to the case of linear polarization [see Fig. 3(f)], for
a time-delayed few-cycle, bicircular field there are two
pronounced ionization bursts at times t0j governed by the
time delay [see Figs. 3(a)–3(e)]. Moreover, the dominant
trajectories for time-delayed few-cycle counterrotating bicir-
cular fields (see Fig. 3 of Ref. [33]) are markedly different
from those for a linearly polarized pulse or for a long
bicircular field [2].
For a large negative delay (−3T) equal to the duration of

the fundamental pulse [see Fig. 3(a)], one might expect
significantly reduced harmonic emission. Unexpectedly,
there is surprisingly strong emission from very long
trajectories returning to the atom with high energy ε ≈ 2

after nearly three optical cycles, while short trajectories
contribute for energies ε < 1.5. For small negative delays
and all positive delays, very long trajectories do not
contribute; trajectories with travel time less than an optical
period determine the shape and cutoff of the HHG
spectrum. For zero delay, the HHG yield is about an order
of magnitude smaller than for negative delays [33].
There is thus no symmetry between large positive and

negative delays: for large positive delays the long trajecto-
ries remain suppressed and the harmonic spectra are
dominated by the short trajectories, which start and finish
during the time the two pulses overlap. This difference
becomes clear upon noting that both the drift velocity and
the lateral displacement of trajectories in the fundamental
field are larger than those in the second harmonic field: the
displacement in the ω pulse is about four times larger than
in the 2ω pulse. Thus, for large time delays returning to the
origin is possible when the delayed ω pulse drives back the
electron initially launched by the 2ω pulse, but not vice

versa. The trajectory analysis shows that positive time
delays allow for easier control of emission properties, since
only a few trajectories (with travel times less than a period
T) contribute.
Our trajectory analysis is confirmed in Fig. 4, which

maps the harmonic intensities and polarizations as a
function of the time delay (see also [33]). A rich interfer-
ence structure is observed up to T ¼ −0.5T, with large-
scale and fine-scale oscillations (see also Fig. 5). The origin
of large- and fine-scale oscillations can be understood by
analyzing the phase difference between two trajectories,
which may be approximately presented as a linear function
[see Eq. (5)]: Φ ¼ S1 − S2 ≈Ωðt1 − t2Þ þ c0, where c0 is
approximately constant. The interference of two trajecto-
ries with close return times (e.g., t1 − t2 ≈ T=3) leads to

FIG. 3. Dependence of the scaled return energy ε ¼ E=up, where up ¼ F2=ð4ω2Þ, on the jth trajectory’s ionization time t0j, and travel
time Δtj, for five time delays T (in units of T ≡ 2π=ω) between the two driving pulses: (a) T ¼ −3T; (b) T ¼ −T; (c) T ¼ 0;
(d) T ¼ T; (e) T ¼ 3T. For reference, panel (f) shows the spectrum for a single-color linearly polarized field. Results are for the H atom
and laser parameters I ¼ 1014 W=cm2, λ ¼ 1.6 μm, N1 ¼ 3, and N2 ¼ 2. The color scale shows the relative contributions of the
dipoles, ∝ jdjj2.

FIG. 4. Color-coded emission intensities (a) and degree of
circular polarization ξ (b) vs two-color pulse time delay T and
emission energyΩ. The laser parameters are the same as in Fig. 3.
Discontinuities in panels (a) and (b) occur when the second order
time derivative of the classical action goes through zero,
Kj · _Kj ¼ 0, leading to the inapplicability of Eq. (3). Results
for N ¼ 87 [solid (red) lines] are plotted in Fig. 5.
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large-scale oscillations, whereas interference of trajectories
with very different return times (e.g., t1 − t2 ≥ T) leads to
fine-scale oscillations. Since for positive time delays the
trajectories do not have large differences in their recombi-
nation times, the HHG spectra and polarization properties
depend smoothly on the time delay.
Figures 4(a) and 5(a) confirm the suppression of the

HHG yield for close to zero two-pulse delay and its
enhancement for both positive and negative T . Such
HHG yield behavior is consistent with the suppression
and enhancement of ionization with changing time delays
between the two pulses (see Figs. 3 and 1 in Ref. [33]).
Figures 4(b) and 5(b) confirm the ability to control the
ellipticity of a given emission frequency as a function of the
two-color time delay, as predicted by the simple physical
model of two dominant emission bursts.
To conclude, based on the proposed theoretical approach

for HHG driven by a few-cycle, counterrotating bicircular
laser field, we have shown that the waveform can be
sculpted by means of the time delay between pulses to
efficiently control HHG intensities and polarizations. This
time-delay scheme has also been shown to allow generation
of the seemingly forbidden 3N harmonics, in sharp contrast
with the case of long-pulse bicircular fields. Finally, as
demonstrated above, the helicity of the generated harmon-
ics can be continuously varied from −1 to þ1 by changing
the time delay between the two-color pulses, thus indicat-
ing that this time delay scheme is an efficient means to
control harmonic polarizations.
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