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We experimentally demonstrate a shaken-lattice interferometer. Atoms are trapped in the ground Bloch
state of a red-detuned optical lattice. Using a closed-loop optimization protocol based on the DCRAB

algorithm, we phase-modulate (shake) the lattice to transform the atom momentum state. In this way,
we implement an atom beam splitter and build five interferometers of varying interrogation times TI. The
sensitivity of shaken-lattice interferometry is shown to scale as T2

I , consistent with simulation (C. A.Weidner,
H. Yu, R. Kosloff, and D. Z. Anderson, Phys. Rev. A 95, 043624 (2017).). Finally, we show that we can
measure the sign of an applied signal and optimize the interferometer in the presence of a bias signal.
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The wave function describing an ensemble of atoms in
an optical lattice will evolve when the lattice is subjected to
amplitude and/or phase modulation. The work of Ref. [1]
showed that a prescribed final state wave function can be
obtained from an initial known wave function by genetic
optimization of a time-dependent phase modulation; i.e., by
learning how to appropriately shake the lattice. In Ref. [2],
we extended this pioneering idea, showing numerically that
one can utilize a shaken lattice to perform atom interfer-
ometry. Utilizing a series of shaking protocols, the quan-
tized momentum states of the atoms in an optical lattice are
transformed and made to undergo a conventional interfer-
ometry sequence of splitting, propagation, reflection,
reverse propagation, and recombination. Configured as a
Michelson interferometer [3], the shaken-lattice interfer-
ometer was shown to be sensitive to inertial forces with the
same T2

I dependence on interrogation time [2] as free-space
atom interferometers [4,5]. More generally, the shaken-
lattice approach allows tuning of the interferometer
transfer function, e.g., to minimize sensitivity to a constant
acceleration.
This Letter presents the first experimental demonstration

of a shaken-lattice interferometer. Optical lattices have been
used to accelerate atoms in interferometers via Bloch
oscillations [6,7]. Shaken optical lattices have been used
to measure gravity [8,9]. Our method differs in that we
shake the lattice to transform the atom wave function from
an initial state to a desired final state. While this method
may be more generally applied to control an atom wave
function, we build an atom-based inertial sensor with
square-law dependence on TI. We demonstrate that the
shaken-lattice interferometer is capable of sensing accel-
eration signals; notably, the sign of the acceleration signal
is readily distinguished. As a first step towards the
demonstration of the tunable sensitivity predicted in
Ref. [2], we optimize the interferometer in the presence

of a bias signal and show sensitivity to perturbations on
this bias.
To find the shaking protocol that best performs the

necessary state-to-state transformations, we perform gra-
dient-free, closed-loop optimization based on the DCRAB

algorithm [10,11]. Other experiments have used this
algorithm to optimize the state inversion of a BEC
[12,13], in Ramsey interferometry schemes [14], or to
calibrate qubit operations in diamond nitrogen vacancy
centers [15]. Optimization protocols have also been used in
cold-atom [16,17] and quantum optics experiments [18], as
well as to find efficient pulse schemes in light-pulse atom
interferometry [19].
Our experiment is based on the compact BEC setup

described in Ref. [20] and shown schematically in Fig. 1.
We trap 87Rb atoms in the jF;mFi ¼ j2; 2i state on an atom
chip and cool them to degeneracy via forced RF evapo-
ration. Similar atom chip-based systems have been used to
build compact optical lattice systems [21] and study
atomtronics [22]. The condensed atoms are loaded into
the ground Bloch state [23] of a red-detuned optical lattice

FIG. 1. Top view of the experimental setup. The optical lattice
beam (dark red) propagates through a lens (L) and focuses on the
atoms in the center of the vacuum cell. The lattice beam then passes
through a cat’s eye system placed after the atoms that focuses the
beam through an EOM and onto the retroreflecting mirror. The
imaging beam (magenta) images the atoms’ momentum state after
being dropped from the lattice and falling for 20 ms time-of-flight.
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with a depth V0 ≈ 14Er, where the recoil energy is Er ¼
ℏ2k2L=2m for an atom mass m and a lattice wave number
kL ¼ 2π=λL.
The optical lattice is formed by retroreflecting a laser of

wavelength λL ¼ 852 nm. The lattice light is locked to the
jF ¼ 4i → jF0 ¼ 4=5i crossover transition in cesium and
comes to a focus (w0 ≈ 40 μm) at the atoms’ position in the
vacuum cell. The beam passes twice through an electro-
optic modulator (EOM) placed after the cell. The EOM
shifts the phase of the reflected light relative to the incident
light; the lattice is shaken by modulating the voltage
applied to the EOM crystal. The desired shaking function
is generated using an arbitrary waveform generator (AWG,
Agilent 33250A), amplified by a factor of 40, and fed into
the EOM. We calibrate the phase change as a function of
the AWG output using an optical Michelson interferometer
and obtain 0.746ð6Þ rad=V, where the parentheses give the
error in the last digit. The motion of the retroreflecting
mirror has a negligible effect on the shaking. Shaking the
lattice diffracts atoms into quantized momentum states
separated by 2ℏkL [1,2]. We image the atoms’ momentum
state populations via standard time-of-flight absorption
imaging. This allows for optimization of the interferometer
sequence and calibration of the atoms’ response to an
applied signal.
To calibrate the atoms’ response to an applied signal, a

pair of coils outside of the cell provides a magnetic field
gradientG ¼ ∂B=∂x along the lattice direction [24]. A bias
magnetic field remains on while the atoms are trapped in
the lattice to maintain the atoms’ spin polarization and thus
their magnetic field sensitivity. The gradient G gives rise to
an effective acceleration

aeff ¼ GgFmFμB=m; ð1Þ

where gF ¼ 1=2 is the Landé g-factor [25] and μB is the
Bohr magneton. In practice, we calibrate the acceleration
due to the gradient field by loading the atoms into a dipole
trap and measuring their velocity as a function of hold time
in the trap while varying G. The applied acceleration aeff
increases linearly with current through the gradient coils
(aeff ¼ 0.71� 0.16 ðm=s2Þ=A), as expected from the Biot-
Savart law.
When building the interferometer sequence the shaking

function is optimized to provide the desired state-to-state
transformations [2]. For example, to implement an atom
beam splitter, we load atoms into the ground Bloch state of
the lattice. The lattice is subsequently shaken to split the
atom wave function so that roughly half of the atoms
occupy each of the �2ℏkL momentum states. We then
optimize separate propagation protocols that maintain this
split state. To recombine the atoms back into the ground
state (in the absence of an applied signal) the optimized
splitting shaking protocol is run in reverse. Each protocol is
T ¼ 0.2 ms long and is multiplied by an envelope function

fenvðxÞ ¼ sin2ðπt=TÞ to ensure smooth turn-on and turn-
off of the shaking. This allows the shaking functions to be
“stitched” together without discontinuity. In this way, we
optimize five separate interferometers with interrogation
times of Tn ¼ 0.4n ms, where n ¼ 1;…; 5. The splitting
and recombination times are included in the definition of
the total interrogation time because they are not negligibly
small relative to the propagation time.
To optimize the interferometer, we define the split

state as our target state. The DCRAB algorithm picks five
frequencies randomly within our chosen frequency band of
18–30 kHz [26], and it assigns each frequency five separate
Fourier sine and cosine amplitudes. The five waveforms
described by these Fourier coefficients become the five
vertices of a simplex in frequency space. Using the Nelder-
Mead algorithm, the simplex is modified and converges on
the target state. Error is determined by building a vector P⃗
with components Pn containing the relative population of
atoms in the 2nℏkL momentum states. In practice, the
population in the �6ℏkL states is negligible, so jnj is
truncated to N ¼ 2. The percent error E is then defined as

E ¼
�
1 −

P⃗ · P⃗des

jP⃗jjP⃗desj

�
× 100%; ð2Þ

where P⃗des is the vector corresponding to the desired state.
For example, the desired state vector for splitting is
Pdes;sp ¼ ð0; 0.5; 0; 0.5; 0Þ. Two examples of optimized
shaking functions are shown in Fig. 2. While splitting
requires relatively high shaking amplitudes, smaller ampli-
tudes are required to maintain this state during propagation.
This is likely because the split state is similar to the first
excited Bloch state of the lattice, so less modulation is
required to maintain a state close to a lattice eigenstate
than to transform from one state to another nearly orthogo-
nal state.
The error in splitting begins at roughly 10% and

increases as propagation protocols are added [Fig. 3(a)].

FIG. 2. Two example shaking functions. (a) Splitting and
recombination shaking protocols. (b) Protocol from (a), but with
4 propagation steps added after splitting. We optimize the
interferometer so that the atoms remain split after each propa-
gation step. In both cases the second half of the shaking protocol
is simply the reflection of the first half.
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This error arises because of atoms detected in the 0ℏkL
momentum state due to atom localization in the deep lattice
potential [27] and atom-atom interactions causing heating
and loss of visibility during the experiment [27–30] or
during time-of-flight [31]. We are also limited by the
asymmetry between the two split clouds and the atoms’
finite momentum spread. Simulations show that this momen-
tum width limits the error to about 1%. Upon recombination,
our errors are < 10% [Fig. 3(b)]. Errors in recombination
manifest largely in the population of higher-order momen-
tum states due to accumulated errors in the splitting and
propagation protocols. The error in recombination is lower
than splitting because spurious atoms detected in the 0ℏkL
momentum state are no longer deleterious.
To quantify the performance of the interferometer, we

measure how the final momentum state vector P⃗a changes
as an acceleration signal a is applied to the atoms. As
determined in Ref. [2], because there are more than two

momentum states considered here, we cannot assign a
phase difference based on the relative path length between
two arms of the interferometer. Thus, we use the classical
Fisher information (CFI) to define the lowest detectable
acceleration δa based on the Cramer-Rao (CR) bound [32].
We can define the CFI as [2]

FC;PðaÞ ¼ Nat

XN
n¼−N

ð∂Pa;n=∂aÞ2
Pa;n

¼ NatðA⃗ · B⃗Þ; ð3Þ

where A⃗ has components An ¼ 1=Pa;n, B⃗ has components
Bn ¼ ð∂Pa;n=∂aÞ2, and Nat is the total atom number. The
CR bound allows us to find the minimum detectable
acceleration δa ¼ 1=

ffiffiffiffiffiffiffiffiffi
FC;P

p
.

The results of this analysis are shown in Fig. 4. The
data is fit to a function fðTIÞ ¼ αT−b

I þ c, where b is the
sensitivity scaling and c is a noise-limited offset that we can
quantify. Therefore, we fit only the values of α and b. A
weighted fit is done to account for the large error bars in the
first point. We attribute these errors to the relatively low
signal-to-noise ratio for this point. The largest contributor
to the value c is an imbalance in the probe pulse area
between the absorption and background images (due to the
finite digital temporal resolution in the experiment). To
mitigate the effects of imaging noise, we set a threshold
OD below which we do not count atoms. We find that the
optimum value of this threshold is ODthresh ≈ 0.05–0.06,
depending on the imaging noise.
This offset c is measured by “measuring” the CR bound

without atoms present, then dividing this number by theFIG. 3. Percent error in the (a) splitting and (b) recombination
protocols as a function of (a) the splitting time TI=2 and (b) the
total interrogation time TI. (a, inset) An image from optimized
splitting of the atoms evenly into the �2ℏkL momentum states
and (b, inset) recombining the atoms into the ground Bloch state.
The colorbar represents optical density (OD).

FIG. 4. Minimum detectable effective acceleration δa plotted as
a function of interrogation time for each of the five interferom-
eters optimized for this work (black) and fit (red) to fðTIÞ ¼
aTb

I þ c. The scaling value b is consistent with the expected T2
I

scaling, and the offset c arises due to imaging noise and is
measured experimentally. (inset) Data taken with no atoms
present (blue) and no shaking applied to the atoms (red) showing
no signal other than imaging noise. Blue data is scaled by the
ratio of the relative atom numbers as explained in the text.
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ratio of the detected atom number with and without atoms
actually being present. Future work will reduce this offset
by improving the exposure balance in the imaging system.
The atom signal-to-noise ratio can be improved by min-
imizing the heating of the atoms in the lattice [33,34] and
lowering the lattice depth to increase the atoms’ visibility in
the lattice [27]; this will allow for longer interrogation
times. However, longer interrogation times will increase
decoherence due to phase diffusion [35], which can be
mitigated by lowering the atom density in the lattice.
Our fit (Fig. 4) gives b ¼ 1.96� 0.13 using our measured

value of c ¼ 0.014ð3Þ, consistent with the expected T2
I

scaling. The measured value for c and the fit for b are
consistent with our results when we leave both b and c to be
free parameters; in this case, we measure b ¼ 2.20� 0.34
and c ¼ 0.015ð2Þ. Data taken on different days gives results
consistent with the expected T2

I scaling, and the data
presented here is a typical example. Furthermore, data taken
where a signal is applied to unshaken atoms is indistin-
guishable from noise, and it shows no discernible scaling
law, showing that the shaking is a coherent process [36].
We can calibrate the interferometer response to a signal

by recording how the final state of the interferometer after
shaking changes with the applied signal. Because the lattice
shaking breaks the symmetry of the system [2], we can
determine the sign of an applied signal. We measure the
variation of the atoms’ final momentum state after inter-
ferometry (Fig. 5). The data show that the final state after an
acceleration a is applied is distinct from the final state after
an acceleration −a is applied. This ability to distinguish the

signal direction differentiates our interferometer from the
typical light-pulse atom interferometer, where the atom
population varies sinusoidally between two states.
Finally, we show steps towards the tunability of the

interferometer transfer function [2]. We optimize the
interferometer in the standard Michelson configuration,
but we add a bias signal abias ¼ −0.71 m=s2 during
optimization. We measure the atoms’ final recombined
momentum state after the addition of signals abias � Δa, as
shown in Fig. 6. The data show that we can distinguish the
sign ofΔa by observing the final state of the atoms. Further
extensions of this work include increasing the magnitude of
abias and optimization of the interferometer to an ac-varying
signal, as predicted in Ref. [2]. This will allow the
interferometer sensitivity to be optimized to any signal
of interest.
In conclusion, we have presented experimental results of

interferometry using atoms trapped in an optical lattice,
showing that shaken-lattice interferometry scales as T2

I .
The sign of the applied signal may be measured, and the
interferometer may be optimized in the presence of a bias
signal. We show that the limit on our interferometer
sensitivity is set by imaging noise, which may be mitigated
with some straightforward experimental improvements.
Improved stability and visibility of atoms in the lattice
will allow for longer interrogation times and improved
limits to the interferometer sensitivity. Finally, it is straight-
forward to expand this system to work in a three-
dimensional lattice system, paving the way towards a
sensor capable of simultaneously measuring accelerations
along three axes.

FIG. 5. Here and in Fig. 6, the momentum population of the
atoms after the TI ¼ 2 ms interferometer sequence as a function
of the applied acceleration signal. Atoms in the 2nℏkL state are
denoted by open blue circles (n ¼ −2), blue crosses (n ¼ −1),
black dots (n ¼ 0), red plus signs (n ¼ 1) and red asterisks
(n ¼ 2). As the applied signal is varied away from zero, we can
distinguish positive and a negative signals. The dotted lines are
cubic spline fits to guide the eye.

FIG. 6. Plot of the momentum state variation as a function of
applied acceleration with the biased interferometer, showing
variation of the final state as the acceleration is varied around
the optimized bias value of abias ¼ −0.71 m=s2 (black dashed
line). Data points and splines colored as in Fig. 5. (inset) An
experimental image of the optimized split state in the biased
interferometer. OD is indicated by the colorbar on the right.

PHYSICAL REVIEW LETTERS 120, 263201 (2018)

263201-4



The authors would like to acknowledge funding from the
NSF JILA Physics Frontier Center under Grant No. 1125844
and Northrop Grumman Corporation. We would also like to
thank Curtis Rau for illuminating discussions.

*dana@jila.colorado.edu
[1] S. Pötting, M. Cramer, and P. Meystre, Phys. Rev. A 64,

063613 (2001).
[2] C. A. Weidner, H. Yu, R. Kosloff, and D. Z. Anderson, Phys.

Rev. A 95, 043624 (2017).
[3] Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q.

Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R.
Segal, and S. Wu, Phys. Rev. Lett. 94, 090405 (2005).

[4] S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S.
Johnson, and M. A. Kasevich, Phys. Rev. Lett. 111,
083001 (2013).

[5] G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs,
J. D. Close, and N. P. Robins, Eur. Phys. Lett. 105, 63001
(2014).

[6] G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs,
K. S. Hardman, M. Johnsson, J. D. Close, and N. P. Robins,
Phys. Rev. A 88, 053620 (2013).

[7] X. Zhang, R. P. del Aguila, T. Mazzoni, N. Poli, and G. M.
Tino, Phys. Rev. A 94, 043608 (2016).

[8] N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli,
and G.M. Tino, Phys. Rev. Lett. 106, 038501 (2011).

[9] M. G. Tarallo, A. Alberti, N. Poli, M. L. Chiofalo, F.-Y.
Wang, and G. M. Tino, Phys. Rev. A 86, 033615 (2012).

[10] T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A 84,
022326 (2011).

[11] N. Rach, M. M. Müller, T. Calarco, and S. Montangero,
Phys. Rev. A 92, 062343 (2015).

[12] R. Bücker, T. Berrada, S. van Frank, J.-F. Schaff, T.
Schumm, J. Schmiedmayer, G. Jäger, J. Grond, and U.
Hohenester, J. Phys. B 46, 104012 (2013).

[13] S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C.
Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T.
Calarco, and S. Montangero, Sci. Rep. 6, 34187 (2016).

[14] S. van Frank, A. Negretti, T. Berrada, R. Bücker, S.
Montangero, J.-F. Schaff, T. Schumm, T. Calarco, and J.
Schmiedmayer, Nat. Commun. 5, 4009 (2014).

[15] F. Frank, T. Unden, J. Zoller, R. S. Said, T. Calarco, S.
Montangero, B. Naydenov, and F. Jelezko, npj Quantum Inf.
3, 48 (2017).

[16] W. Rohringer, R. Bücker, S. Manz, T. Betz, C. Koller, M.
Göbel, A. Perrin, J. Schmiedmayer, and T. Schumm, Appl.
Phys. Lett. 93, 264101 (2008).

[17] P. B. Wigley, P. J. Everitt, A. van dan Hengel, J.W. Bastian,
M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman,
C. D. Quinlivan, P. Manju, C. C. N. Kuhn, I. R. Petersen,

A. N. Luiten, J. J. Hope, N. P. Robins, and M. R. Hush, Sci.
Rep. 6, 25890 (2016).

[18] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A.
Zeilinger, Phys. Rev. Lett. 116, 090405 (2016).

[19] S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D.
Close, New J. Phys. 14, 023009 (2012).

[20] D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B.
Squires, and D. Z. Anderson, Appl. Phys. Lett. 96, 093102
(2010).

[21] C. J. E. Straatsma, M. K. Ivory, J. Duggan, J. Ramirez-
Serrano, D. Z. Anderson, and E. A. Salim, Opt. Lett. 40,
3368 (2015).

[22] S. C. Caliga, C. J. E. Straatsma, and D. Z. Anderson, New J.
Phys. 18, 025010 (2016).

[23] J. Hecker-Denschlag, J. E. S. H. Häffner, C. McKenzie, A.
Browaeys, D. Cho, K. Helmerson, S. L. Rolston, and W. D.
Phillips, J. Phys. B 35, 3095 (2002).

[24] A gradient is also applied in the direction orthogonal to
the lattice direction (and to gravity), but the only effect is
a negligible shift in the lattice trap position along this
direction.

[25] D. Steck, available online http://www.steck.us/alkalidata/
rubidium87numbers.1.6.pdf (2015), revision 2.1.5.

[26] This frequency range is chosen because it surrounds the
Bloch band 0 → 1 transition. The atoms’ momentum
population changes most dramatically in this band. This
narrows our search space for faster convergence on the
desired state.

[27] R. Sapiro, R. Zhang, and G. Raithel, New J. Phys. 11,
013013 (2009).

[28] M. Reitter, J. Näger, K. Wintersperger, C. Sträter, I. Bloch,
A. Eckardt, and U. Schneider, Phys. Rev. Lett. 119, 200402
(2017).

[29] S. Choudhury and E. J. Mueller, Phys. Rev. A 91, 023624
(2015).

[30] S. Choudhury and E. J. Mueller, Phys. Rev. A 92, 063639
(2015).

[31] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T.
Esslinger, Appl. Phys. B 73, 769 (2001).

[32] S. Haine, Phys. Rev. Lett. 116, 230404 (2016).
[33] S. Blatt, A. Mazurenko, M. F. Parsons, C. S. Chiu, F. Huber,

and M. Greiner, Phys. Rev. A 92, 021402(R) (2015).
[34] C. A. Weidner and D. Z. Anderson, arXiv:1803.01235v1.
[35] J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675

(1997).
[36] For the accelerations presented here, the interrogation time

is much less than the Bloch oscillation time τB ∝ 1=a. Thus,
we do not expect the atoms population to change dramati-
cally when accelerated without shaking. Because of the T2

I
scaling, as we increase TI, the lower values of a that we are
sensitive to strengthen this assumption.

PHYSICAL REVIEW LETTERS 120, 263201 (2018)

263201-5

https://doi.org/10.1103/PhysRevA.64.063613
https://doi.org/10.1103/PhysRevA.64.063613
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevA.95.043624
https://doi.org/10.1103/PhysRevLett.94.090405
https://doi.org/10.1103/PhysRevLett.111.083001
https://doi.org/10.1103/PhysRevLett.111.083001
https://doi.org/10.1209/0295-5075/105/63001
https://doi.org/10.1209/0295-5075/105/63001
https://doi.org/10.1103/PhysRevA.88.053620
https://doi.org/10.1103/PhysRevA.94.043608
https://doi.org/10.1103/PhysRevLett.106.038501
https://doi.org/10.1103/PhysRevA.86.033615
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.92.062343
https://doi.org/10.1088/0953-4075/46/10/104012
https://doi.org/10.1038/srep34187
https://doi.org/10.1038/ncomms5009
https://doi.org/10.1038/s41534-017-0049-8
https://doi.org/10.1038/s41534-017-0049-8
https://doi.org/10.1063/1.3058756
https://doi.org/10.1063/1.3058756
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/srep25890
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1088/1367-2630/14/2/023009
https://doi.org/10.1063/1.3327812
https://doi.org/10.1063/1.3327812
https://doi.org/10.1364/OL.40.003368
https://doi.org/10.1364/OL.40.003368
https://doi.org/10.1088/1367-2630/18/2/025010
https://doi.org/10.1088/1367-2630/18/2/025010
https://doi.org/10.1088/0953-4075/35/14/307
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
http://www.steck.us/alkalidata/rubidium87numbers.1.6.pdf
https://doi.org/10.1088/1367-2630/11/1/013013
https://doi.org/10.1088/1367-2630/11/1/013013
https://doi.org/10.1103/PhysRevLett.119.200402
https://doi.org/10.1103/PhysRevLett.119.200402
https://doi.org/10.1103/PhysRevA.91.023624
https://doi.org/10.1103/PhysRevA.91.023624
https://doi.org/10.1103/PhysRevA.92.063639
https://doi.org/10.1103/PhysRevA.92.063639
https://doi.org/10.1007/s003400100744
https://doi.org/10.1103/PhysRevLett.116.230404
https://doi.org/10.1103/PhysRevA.92.021402
http://arXiv.org/abs/1803.01235v1
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1103/PhysRevLett.78.4675

