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We present a new solution to the hierarchy problem utilizing nonlinearly realized discrete symmetries.
The cancellations occur due to a discrete symmetry that is realized as a shift symmetry on the scalar and as
an exchange symmetry on the particles with which the scalar interacts. We show how this mechanism can
be used to solve the little hierarchy problem as well as give rise to light axions.
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Introduction.—In this Letter, we describe a new mecha-
nism for obtaining a scalar that is parametrically lighter
than the UV cutoff of the theory. This mechanism involves
a discrete ZN symmetry that is nonlinearly realized on a
scalar as a shift symmetry and manifests as an exchange
symmetry on the N copies of particles with which it
interacts. (Because of the presence of additional discrete
symmetries, the ZN symmetry may be enhanced to a DN
symmetry.) This approach allows one to obtain a hierarchy
between the mass of the scalar and the UV cutoff that is
exponential in N, meaning that N ¼ 3 already solves most
problems.
We first consider an explicit example of a Yukawa

coupling between a scalar and a fermion. The starting point
is a periodic scalarϕwith period2πf.ϕ has a spurion ϵwhich
breaks the arbitrary shift symmetry ϕ → ϕþ α down to
ϕ → ϕþ 2πf. Thus, ϕ only appears in the Lagrangian as

ϵ sin

�
ϕ

f
þ θ

�
: ð1Þ

This structure can result from a perturbative UV completion
where ϕ is the pseudo-Goldstone of a complex scalar
Φ ∼ eiϕ=f.
The theory also has a discreteZN symmetry under which

ϕ transforms as

ϕ → ϕþ 2πf
N

: ð2Þ

It is crucial to the mechanism that the spurion of shift
symmetry breaking is not invariant under this symmetry.

Next, we introduceWeyl fermions ψk and ψc
k for ϕ to couple

to. Under the ZN symmetry, the fermions transform as

ψk; ψc
k → ψkþ1; ψc

kþ1; ð3Þ

where we have identified ψ ðcÞ
0 and ψ ðcÞ

N . ϕ and ψ are coupled
in a ZN-symmetric manner via the interaction

L ¼
XN
k¼1

�
mψ þ ϵ sin

�
ϕ

f
þ 2πk

N

��
ψkψ

c
k: ð4Þ

This Lagrangian describes a scalar ϕ coupled to fermions
with a Yukawa coupling ∼ϵ=f. Thus the natural expect-
ation for the mass of ϕ is

mϕ ≳ ϵΛ
f

; ð5Þ

where the UV cutoff is Λ. This intuition turns out to be
incorrect as the scalar described in Eq. (4) has its potential
canceled to a very high degree of accuracy. N insertions of
ϵ will be needed until a nontrivial potential for ϕ can be
obtained.
To see the cancellations in action, we take N > 2 and

consider the potential induced for ϕ by closing the fermion
loop with two insertions of ϵ:

V1−loop ⊃
XN
k¼1

ϵ2sin2
�
ϕ

f
þ 2πk

N

�
Λ2 ¼ N

2
ϵ2Λ2: ð6Þ

The quadratic divergence to the ϕ mass coming from a
fermion ψk has been canceled by its N − 1 partners. There
is a stronger version of the above cancellation, which is that
for all integer m with N > m ≥ 0,

XN
k¼1

sinm
�
ϕ

f
þ 2πk

N

�
¼

�
0 m ¼ odd
N
2m

m!
ðm=2Þ!2 m ¼ even:

ð7Þ
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Thus the leading-order UV contribution to the potential of
ϕ comes from the higher-dimensional operator with N
insertions of the spurion ϵ.

VðϕÞ ∝ ϵN

ΛN−4

XN
k¼1

sinN
�
ϕ

f
þ 2πk

N

�

¼ ð−1ÞbN=2c NϵN

2N−1ΛN−4 cos

�
Nϕ

f
−
π

2
ðN%2Þ

�
; ð8Þ

where % is the modulo operator. The UV contribution to
the mass of ϕ scales as

m2
ϕ ∼

N3ϵN

f2ΛN−4 ð9Þ

and is exponentially suppressed in N.
In the previous paragraph we have done a Taylor series

of the 1-loop potential in terms of ϵ=Λ. There is nothing
special about this potential being the 1-loop potential. We
can also take the all-loop quantum potential for ϕ and
perform a Taylor series in ϵ=Λ. As before, the cancellations
still occur and UV contributions to the mass are suppressed
by ðϵ=ΛÞN at all-loop order. Below, we will see that the
results can even extend to the nonperturbative level where
the Taylor series may not be well defined.
To get an intuitive understanding of why the potential is so

suppressed, we analyze the potential for ϕ from a symmetry
perspective. Because of theZN symmetry, the potential forϕ
must be 2πf=N periodic so that we can express it as

VðϕÞ ¼
X
k

ck sin
�
Nkϕ
f

þ θk

�
: ð10Þ

We will see below that under a broad set of assumptions,

ck ∼ ϵNk; ð11Þ

so that by taking ϵ small and N large, we can parametrically
separate the mass of the scalar from the UV cutoff.
The quick and dirty way to derive that ck ∼ ϵNk is to note

that eiNϕ=f ¼ ðeiϕ=fÞN , so thatN insertions of the symmetry-
breaking spurion ϵeiϕ=f are needed to generate a potential for
ϕ. Alternatively, the relation can be obtained by considering
the potential in frequency space. The interaction frequency of
ϕ isω ¼ 1=f [V ∼ cosðωϕÞψψc]. The frequency associated
with the mass term and every other term in the potential forϕ
isNω ¼ N=f due to theZN symmetry. In order to construct
the high-frequency mass term, N contributions of the lower
frequency ω are needed. Each of these comes with its own
factor of ϵ giving the scaling shown in Eq. (11).
A critical assumption that was made implicitly in the

previous discussion is that there are no phase transitions or
massless particles asϕ varies in field space. Phase transitions
introduce discontinuities. By cutting up a 2πf symmetric

potential, a 2πf=N symmetric potential can be easily
generated. This point will be exploited later in the Letter
to obtain a light Higgs boson.
Since ϵ is a dimension-one number, we need to specify

what the dimensionless expansion parameter is. When
dealing with UV contributions to the potential, it is clear
that the expansion parameter is ϵ=Λ. In this case,

ck ∼ Λ4

�
ϵ

Λ

�
Nk
: ð12Þ

In addition to UV contributions to the potential, there
will also be IR contributions. As an example of how the IR
contributions behave, consider the coupling to the fermions
discussed before in Eq. (4). The effective potential will
depend on the fermion mass mψ in some manner, e.g.,
m4

ψ logmψ . From this, one sees that the expansion param-
eter for IR contributions to the potential is ϵ=mψ and that

ck ∼ Λ4
IR

�
ϵ

mψ

�
Nk
: ð13Þ

Depending on other IR parameters in the Lagrangian, the IR
potential for ϕ can be relatively unsuppressed. Thus scalars
of this type are sensitive to the IR but insensitive to the UV.
Analytic bounds.—In the example given in the

Introduction, we saw that a scalar could couple strongly
to matter yet remain light. Here, we extend the previous
result to more general situations. We describe under what
circumstances the mass of a scalar ϕ is exponentially
suppressed in N and under what circumstances it is only
power-law suppressed in N.
Because of the ZN symmetry, the full nonperturbative

quantum potential for ϕ can always be expressed in the
form

VðϕÞ ∝
XN−1

k¼0

F

�
ϕ

f
þ 2πk

N

�
: ð14Þ

Unlike before, we do not assume the existence of a small
coupling ϵ. The results presented in this section are valid for
any choice of the function F and for any value of N, but are
most useful in the case where F does not depend explicitly
on N.
The large-N limit of Eq. (14) is easy to understand as the

sum is simply a Riemann sum that converges to an integral:

VðϕÞ ∝
XN−1

k¼0

F

�
ϕ

f
þ 2πk

N

�

¼ N
2π

Z
2π

0

FðθÞdθ þOðN0Þ: ð15Þ

The leading-order piece is completely ϕ independent so
that the mass of ϕ is subleading in the large-N limit. Let us
denote the subleading piece that generates the mass of ϕ as
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ENðFÞ ¼
Z

2π

0

FðθÞdθ − 2π

N

XN−1

k¼0

F

�
ϕ

f
þ 2πk

N

�
: ð16Þ

The scaling of the mass of ϕwithN is an issue of estimating
the convergence rate of the Riemann sum of F00. Riemann
sums of periodic functions are known to converge extremely
quickly, and we present two useful theorems (the proofs can
be found in Sec. 9.4 of Ref. [1]).
The first theorem is a special case of the Euler-Maclaurin

theorem. If the function F is 2π periodic and 2mþ 1 times
differentiable, then

jENðFÞj ≤
2

N2mþ1

�X∞
j¼1

1

j2mþ1

�Z
2π

0

jFð2mþ1ÞðθÞjdθ:

Potentials where there are massless particles as ϕ varies
will have discontinuities and are not infinitely differen-
tiable. In these cases, the mass of ϕ is only power-law
suppressed by N.
The second theorem can be shown via the residue

theorem. Let F be a 2π-periodic function that is also
analytic. Then there exists an open strip, which includes the
real axis and the complex axis from −ia to ia with a > 0,
upon which F can be extended into a holomorphic, 2π-
periodic, bounded function with bound M. In this case,

jENðFÞj ≤
4πM

eNa − 1
: ð17Þ

Potentials that are infinitely differentiable give an expo-
nentially suppressed mass for ϕ even if there is no small
parameter in the problem.
These two theorems demonstrate how much the mass of

ϕ can be suppressed for any given potential. In the case
where there are massless particles as ϕ varies, the mass of ϕ
is suppressed by how differentiable the potential is. In the
case with no discontinuities, the mass is exponentially
suppressed even if there is no small number in the problem.
Examples.—In the example given in the Introduction, we

showed how a light scalar (e.g., from a fifth force or dark
matter) Yukawa coupled to the SM that naively looks tuned
can actually arise naturally. Here, we provide two more
examples of how this new solution to the hierarchy problem
can be applied to theories of interest. The first example is
that of a light axion. This example serves to highlight how
different this solution is from other solutions such as
supersymmetry, which cannot make the axion lighter than
its QCD contributions. The second example is a solution to
the little hierarchy problem.
A light axion: Unlike the example in the Introduction,

the axion [2–5] does not have a small parameter ϵ
characterizing its couplings. However, the axion potential
is analytic so that by the theorems presented before, its
mass must be exponentially suppressed in the large-N limit.
As before, we have a ZN symmetry with N copies of the
SM that are interchanged under the symmetry, and an axion

that nonlinearly realizes the discrete symmetry. The axion
couples to the N different sectors via the coupling

L ¼
X
k

�
a
f
þ 2πk

N
þ θ

�
GkG̃k: ð18Þ

Because of confinement of the N different QCD sectors,
there will be a potential for the axion whose leading order
contribution is

VðaÞ ¼ −m2
πf2π

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

mumd

ðmu þmdÞ2
sin2

�
a
2f

þ πk
N

�s
:

þOðm4
πÞ: ð19Þ

As the theta angles are all identical, we have shifted them
away. With a bit of algebra, one can show that θ ¼ 2πk=N
for integer k is a minimum (maximum) for N odd (even).
To use the results of the convergence theorems presented

before, we define

FðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

mumd

ðmu þmdÞ2
sin2

�
z
2

�s
; ð20Þ

which is holomorphic until the square root of a negative
number is taken. We are thus considering the open strip
ð−ia; iaÞ, where

a ¼ logðcþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p
Þ; c ¼ ðmu þmdÞ2

2mumd
− 1: ð21Þ

Inserting the measured values of the quark masses, we find
that the mass of the axion is bounded to be ≈1=2N=2 smaller
than its natural value where we have neglected the sub-
leading terms proportional to powers of N.
Equation (19) contains subleading terms suppressed by

more powers of the quark masses. These terms are also
analytic and thus also give exponentially suppressed con-
tributions to the axion mass. These contributions are also
suppressed by at least 2N=2. To understand this scaling
behavior, we note that if mu ¼ md, there is a first-order
phase transition at θ ¼ π [6]. If the quark masses are equal,
the axion potential is nonanalytic and thus not exponen-
tially suppressed. Any nonzero mass difference results in an
analytic potential, and the parameter governing the expo-
nential suppression is necessarily mu=md ∼ 1=2. As the
exponential suppression of the mass is due to how far away
the potential is from discontinuities, also known as phase
transitions, the axion mass is necessarily suppressed by at
least 1=2N=2.
Aside from analytically bounding the mass of the axion

in the large-N limit, we also numerically fit the exponential
dependence of the axion mass on N and find that

maðNÞ
maðN ¼ 1Þ ∼

4

2N=2 : ð22Þ

There is good agreement between the analytically derived
limit on the mass and actual mass.
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The price of obtaining an exponentially lighter axion is
the linear problem associated with the fact that only one
of the N copies of the SM has θ ¼ 0. The rest have
θ ¼ 2πk=N. Thus one has traded an exponential fine tuning
in the mass for a linear tuning of why we are in the sector
with θ ¼ 0. This secondary problem may be solvable via
other mechanisms.
A naturally light Higgs boson: Solving the hierarchy

problem is fundamentally about finding a reason that a
Higgs mass of zero is special. The scalars discussed in this
article are sensitive to phase transitions. As a phase
transition occurs when the Higgs mass crosses zero, these
scalars should be able to favor a small Higgs mass.
Following this train of thought, in this subsection we

develop a theory for the modulus of the Higgs mass. A
modulus coupling to N ¼ 3 or 4 copies of the Higgs bosons
can result in one of them being lighter than what naturalness
would otherwise imply by a factor of 10, thereby solving the
little hierarchy problem. If the other N − 1 copies of the
Higgs boson had positivemasses, then therewould only need
to be N copies of the Higgs boson with the rest of the SM
transforming trivially under the ZN . In the model presented
below, the otherHiggs bosons obtain a negativemass squared
so that the entire SM needs to be copied.
N ¼ 3=N ¼ 4 case: Consider a ZN symmetry under

which there are N copies of the SM and a scalar ϕ, which is
the modulus of the Higgs mass. [In principle, SUð3Þc ×
Uð1ÞY could transform trivially under this exchange sym-
metry, but the resulting light colored and charged particles
have been excluded by experiment.] For the rest of this
section, N will be 3 or 4. We couple ϕ to the Higgs boson
with a shift symmetry-breaking parameter ϵ2:

V ¼
X
k

m2
H;kðϕÞHkH

†
k þ λðHkH

†
kÞ2;

m2
H;kðϕÞ ¼ −m2

H þ ϵ2 cos

�
ϕ

f
þ 2πk

N

�
: ð23Þ

For simplicity, we will take all cross-quartic couplings
between the Higgs bosons to be zero, but our results will
not depend on this assumption. We will take m2

H > 0 and
Λ2 > ϵ2 ≳m2

H ¼ 3y2tΛ2=8π2. As discussed before, the UV
contribution to the ϕ potential will be suppressed by
ϵ2N=Λ2N−4.
The Higgs naturally has a phase transition when its mass

changes sign. Thus the potential for ϕ will be sensitive to
changes in the sign of the Higgs mass. To see this effect
explicitly, we integrate out the Higgs classically. Only if the
total Higgs mass is negative will the Higgs induce a nonzero
tree-level potential for ϕ. The tree-level potential for ϕ is

V ¼ −
ϵ2N

Λ2N−4 cos

�
N
ϕ

f
þ θ

�

−
X
k

m4
H;kðϕÞ
4λ

Θð−m2
H;kðϕÞÞ: ð24Þ

Byprevious arguments, if all threeHiggsmasses are negative
(requiring that all three Higgs masses are negative for certain
values of ϕ and that one of them becomes positive for other
values ofϕ corresponds to the choice that 2m2

H > ϵ2 > m2
H),

then the contribution to the potential from theHiggs boson is
ϕ independent. However, as soon as some of the Higgs
masses become positive, a phase transition occurs and there
is a potential for ϕ.
An example N ¼ 3 potential is shown in Fig. 1 for some

specific choices of parameters. The preference for small
Higgs masses can be seen by considering the Higgs boson’s
contribution to the potential of ϕ. Over some of parameter
space, all of the three Higgs mass squareds are negative and
ϕ does not acquire a potential from the Higgs bosons.
However, whenever one of the Higgs masses becomes
positive, there is no longer a cancellation and the potential
quickly increases. Thus this contribution to the potential
has a minimum whenever all of the Higgs masses are
negative. This preference for negative Higgs masses is
balanced against the ϵ-suppressed UV contribution to the
potential. Choosing the phase of the UV contribution to
favor positive Higgs masses gives a theory where at the
minimum of the potential, one of the sectors has a Higgs
boson with a small positive mass.
WhenN ≳ 3, the UV contribution becomes subdominant

to the 1-loop potential for ϕ. The 1-loop Coleman-
Weinberg potential gives a potential for ϕ that is of the form

V1−loop ¼
β

16π2
X
k

ðHkH
†
kÞ2 logHkH

†
k=m

2
H: ð25Þ

The sign and value of β is determined by the beta functions
at the natural scale of the Higgs masses. The N ¼ 4
potential including the 1-loop potential (β ¼ 0.2) is shown
in Fig. 2.

0 1 2 3 4 5 6

–13.95

–13.90

–13.85

–13.80

–13.75

–13.70

–13.65

–13.60

/f

V
(a

rb
.u

ni
ts

)

FIG. 1. The N ¼ 3 tree-level potential when ϵ2 ¼ 1.3m2
H . The

solid line is the potential with no UV contribution, while the
dotted (dashed) line includes the UV generated potential with
θ ¼ 0 (θ ¼ π) in Eq. (24). If the UV-generated potential has a
minimum where the Higgs masses are all negative, then all Higgs
masses are at their large natural value. If the UV-generated
potential has a minimum where one of the Higgs masses is
positive, then there is a light Higgs boson.
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The previous two examples of N ¼ 3 and N ¼ 4 gave a
small positive Higgs mass, as opposed to the observed
small negative Higgs mass. There are two simple ways
of obtaining a small negative Higgs mass. The first is to
introduce a small amplitude but high-frequency sine wave
potential for ϕ,

V ¼ α cos

�
Mϕ

f

�
: ð26Þ

This will introduce additional minima, but can result in a
small negative Higgs mass in the absolute minimum. For
example, including the 1-loop potential for N ¼ 4, the
values α ¼ −0.01m4

H,M ¼ 36, and β ¼ 0.1 give a negative
Higgs mass at the absolute minimum. For this parameter
set, the UV cutoff is 10 TeV.
Another way of obtaining a small negative Higgs mass is

to introduce an additional Z2 symmetry under which the N
copies of the SM are taken to another N copies. In the limit
of an exact Z2 symmetry, there are two light Higgses with
identical small positive masses. The Z2 symmetry is softly
broken by giving the two sectors slightly different Higgs
masses,m2

H andm2
H þ δ2. A small negative Higgs mass can

result if δ≳ 125 GeV. For example, in the N ¼ 4 case
above, a small δ2 ∼ 0.02m2

H and β ¼ 0.05 results in two
light Higgs bosons each a factor of 10 lighter than the bare
mass. One of the two has a positive mass squared while the
other has a negative mass squared.
Taking the large-N limit of the above solution to the little

hierarchy problemdoes not produce any parametric enhance-
ments, though there are small numerical benefits going
beyond N ¼ 3 or 4. The main issue is that requiring that
there is only one Higgs mass that is positive at a time means
that m2

H= cos ðπ=NÞ > ϵ2 > m2
H. In the large-N limit, this

amounts to a 1=N2 tuning. Even accepting this tuning,
the other major issue is that the 1-loop Coleman-Weinberg
potential is not parametrically suppressed. By explicit

calculation, the Coleman-Weinberg potential is only 1=N2

suppressed, which does not result in a small enough Higgs
mass.
Many intriguing possibilities arise if the Coleman-

Weinberg potential were highly suppressed due to very
small beta functions. Taking N ∼ 10 would suppress the
UV contributions to a point where this would be a solution
to the full hierarchy problem. Additionally, the minimum
with a negative Higgs mass near 100 GeV could be
generated by features in the beta function, e.g., a small
increase and decrease in the quartic around 100 GeV. This
offers a unique twist on how conformal dynamics might
result in a light Higgs mass.
Phenomenology: The phenomenology of this solution

to the little hierarchy problem will be discussed in detail in
future work. Here we summarize the salient features.
Preferential reheating of the sector with a light negative

Higgs mass is built into the model as ϕ couples to the
SM Higgs bosons through scalar mixing and is exactly the
scalar reheating model described in N naturalness [7].
Since ϕ is naturally lighter than the lightest Higgs boson, its
decays preferentially reheat the sector with the lightest
Higgs boson, evading all current cosmological constraints.
Thus, if ϕ mediates reheating to the SM, then all cosmo-
logical problems are naturally avoided.
Another feature of this solution is that the only particle

required to interact with the Higgs boson is ϕ. Much like
the axion solution to the strong CP problem, this mecha-
nism works for any value of f and a large value of f results
in ϕ being very difficult to detect. In this limit, ϕ shares all
of the same benefits and problems as the axion, e.g., care is
needed so as not to overclose the universe, but on the flip
side, ϕ can provide a dark matter candidate.
The details will depend on the particular models, but

parametrically mϕ ∼ TeV2=f and the mixing with the
Higgs scales as ∼10 TeV=f. ϕ with masses down to
∼0.1 GeV (f ≲ 107 GeV) are excluded by meson decays
and beam dumps (see Refs. [8,9] for a compendium of
constraints). Horizontal branch star cooling constrains
scalar couplings to electrons and excludes ϕ in the range
1013 GeV≳ f ≳ 1010 GeV, while fifth-force experiments
exclude f ≳ 1017 GeV (see Refs. [10,11] for a compen-
dium of constraints). These estimates are very rough and
detailed constraints will be model dependent.
Finally, if there is a nonzero cross-quartic coupling

between the Higgs bosons, then the Higgs can mix with
the other Higgs bosons. Because of the requirement of
vacuum stability and the relatively small value of the SM
quartic coupling, negative cross quartics larger than a few
percent are excluded. Positive cross quartics larger than a
few percent are also excluded, as large cross quartics
generally push the theory out of the parameter space where
all three Higgs bosons can obtain vevs. As a result, the
mixing between the multiple Higgs bosons is suppressed
by ≈ few ×10−3. The resulting exotic collider signatures are

0.0 0.5 1.0 1.5

–11.45

–11.44

–11.43

–11.42

–11.41

–11.40

– 11.39
V

(a
rb

.u
ni

ts
)

FIG. 2. The N ¼ 4 potential including 1-loop effects for ϵ2 ¼
1.3m2

H and β ¼ 0.2. At the minimum, one of the four Higgs
masses is ∼0.1mH and is positive. As the Higgs is a factor of ∼10
lighter than its natural value, it solves the little hierarchy problem
modulo getting the sign of the Higgs mass wrong.
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very similar to twin Higgs models (see, e.g., Refs. [12,13])
only with much smaller production rates. Another difference
is the absence of the v=f tuning needed to make electroweak
symmetry breaking work in twin Higgs models.
Conclusion.—To conclude, we briefly compare our new

solution to similar solutions to the hierarchy problem, twin
Higgs [14] and little Higgs [15]. In unitary gauge, both
little Higgs and twin Higgs solve the gauge and Yukawa
divergences by coupling the Higgs boson as sin v=f to our
sector and as cos v=f to our partners. The cancellations are
then just aZ4 version of the previous arguments, where two
copies have been removed because gauge invariance
cancels the odd powers of v so that the extra two copies
are not needed for the cancellation. This discrete symmetry
solution utilizes a generalization of these sin or cos
identities though in a completely different manner.
The approach most similar to the one presented in this

Letter is dimensional deconstruction of an extra dimension
where the scalars only pick up a mass nonlocally [15,16].
The dimensional deconstruction based theories result in
effective field theories that are a subset of our more general
approach. In that language, the scalar is light due to 5D
gauge invariance and locality. In contrast, as can be seen
from our discrete symmetry based approach, the N sectors
do not need to be Higgsed down to the diagonal subgroup
(no fifth dimension is required) and no sense of locality is
needed in theory space. Any interaction is allowed as long
as the interactions satisfy the ZN symmetry.
The most obvious extension for this approach is to use it

on the Higgs boson directly. There are two challenges for
this approach. The first is that our solution to the hierarchy
problem suppresses the Higgs quartic. The second is that
while gauge charged scalars can be made compact, they
cannot be made periodic. If there were a non-Abelian
equivalent of frequency, then there might be a way to solve
the quadratic divergences coming from the Yukawa cou-
plings in this manner.
There is still much to be explored with this new solution

to the hierarchy problem. We briefly list a few below:
(i) The ZN solutions to the little hierarchy problem need to
be explored both theoretically and phenomenologically.
Ideally there exists a model where the only particles
transforming under the ZN symmetry are the Higgs boson
and the modulus. In this case, the top quark would be its
own partner. (ii) UV completions of these theories would
also be interesting, since moduli frequently appear in string
theory and very often have discrete symmetries associated
with them. (iii) Many theories of flavor involve discrete
symmetries; hence a scalar that realizes the discrete
symmetry nonlinearly may allow for interesting flavor

physics and possibly even explain why the universe has
three generations. (iv) This new solutions allows for fifth
forces and scalar dark matter that would otherwise appear
tuned. (v) The moduli can be dark matter, leading to new
and interesting signatures in the early universe and at
experiments. (vi) This mechanism allows for the inflaton to
have large couplings and not ruin its flat potential.
Very optimistically, the sensitivity of this scalar to phase

transitions leads one to hope that this approach could help
solve the cosmological constant problem as well. At the
very least, the recent spate of solutions to the hierarchy
problem [7,17] demonstrates that there is still much to be
learned about naturalness.
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