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We explore in a parameterized manner a very large range of physically plausible equations of state
(EOSs) for compact stars for matter that is either purely hadronic or that exhibits a phase transition. In
particular, we produce two classes of EOSs with and without phase transitions, each containing one million
EOSs. We then impose constraints on the maximum mass (M < 2.16 M⊙) and on the dimensionless tidal
deformability (Λ̃ < 800) deduced from GW170817, together with recent suggestions of lower limits on Λ̃.
Exploiting more than 109 equilibrium models for each class of EOSs, we produce distribution functions of
all the stellar properties and determine, among other quantities, the radius that is statistically most probable
for any value of the stellar mass. In this way, we deduce that the radius of a purely hadronic neutron star
with a representative mass of 1.4 M⊙ is constrained to be 12.00 < R1.4=km < 13.45 at a 2σ confidence
level, with a most likely value of R̄1.4 ¼ 12.39 km; similarly, the smallest dimensionless tidal deformability
is Λ̃1.4 > 375, again at a 2σ level. On the other hand, because EOSs with a phase transition allow for very
compact stars on the so-called “twin-star” branch, small radii are possible with such EOSs although not
probable, i.e., 8.53 < R1.4=km < 13.74 and R̄1.4 ¼ 13.06 km at a 2σ level, with Λ̃1.4 > 35.5 at a 3σ level.
Finally, since these EOSs exhibit upper limits on Λ̃, the detection of a binary with a total mass of 3.4 M⊙

and Λ̃1.7 > 461 can rule out twin-star solutions.
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Introduction.—OnAugust 17, 2017, the Advanced LIGO
and Virgo network of gravitational-wave detectors recorded
the signal from the inspiral of a binary neutron-star system,
i.e., event GW170817 [1]. Less than a couple of seconds
later, the gravitational-wave signal was followed by a series
of electromagnetic emissions. These electromagnetic coun-
terparts have provided the long-sought confirmation that
merging neutron-star binaries can be associated with short
γ-ray bursts, shedding important light on the long-standing
puzzle of the origin of these phenomena [2–5].
These multimessenger observations, together with

numerical simulations of merging neutron stars (see [6,7]
for recent reviews), and the modeling of the kilonova
emission from this process [8–10] have provided important
new insight on themaximummass of neutron stars andon the
expected distribution in radii [11–17]. The approaches
followed in these works differ significantly in the techniques
employed but provide a remarkably robust picture of what is
the maximummass of nonrotating stellar modelsMTOV. For
example, by combining the signal from GW170817 and
quasiuniversal relations (see, e.g., [18,19]) that correlate
MTOV with the maximum mass supported through uniform
rotation Mmax [20] (see [21] for the case of differential
rotation), Ref. [15] has set constraints on themaximummass
to be 2.01þ0.04

−0.04 ≤ MTOV=M⊙ ≲ 2.16þ0.17
−0.15 , where the lower

limit comes from pulsar observations [22]. Similarly, by
considering the most generic family of neutron-star-matter

equations of state (EOSs) that interpolate between recent
nuclear-physics results at low and high baryon densities,
Ref. [11] has set constraints for the radius of a 1.4 M⊙
neutron star to be R1.4 < 13.6 km, while the minimum
dimensionless tidal deformability is Λ̃1.4 > 120.
In this Letter, we reconsider the problem of constraining

the radii and tidal deformability of neutron stars considering
more than two million different EOSs (with and without a
phase transition) that are physically plausible and respect the
observational constraints on the maximum mass. Using this
large set of equilibria,we explore thedistribution functions of
stellar models and how they are affected by the imposition of
various constraints, be they on the maximum mass or on the
dimensionless tidal deformability.
Explorations of this type have been considered in the

recent past, starting from theworks of Refs. [23,24] (see also
[25]), who derived limits on the neutron-star radius by using
data from x-ray binaries combined with parameterized EOSs
(see [26,27] for recent reviews). When compared with these
approaches, our results benefit from several improvements.
First, we impose, and in a differential manner, recent
constraints on the maximum mass [13,15–17] and on the
tidal deformability [10,14] coming directly fromGW170817
and that obviously could not have been included by previous
works, e.g., [23,24,28,29]. Second, we exploit recent
improvements on the EOS of neutron matter in the outer
core [30], which plays a fundamental role in determining the
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stellar radius. Third, we carry out the first systematic study of
the statistical properties of the tidal deformability high-
lighting that the lower limit for Λ̃ is very tightly constrained.
Finally, we explore a more recent, but also more restricted,
prescription for the outer core as infinite neutron matter [31]
and compare to the results obtained using the setup employed
by Ref. [11]. Hereafter, masses will be in units of solar
masses and radii in kilometers.
Methods and setup.—We compute models of cold non-

rotating neutron stars by numerically solving the Tolman-
Oppenheimer-Volkoff (TOV) equations together with an
EOS. As the complete EOS is unknown, we construct a
parameterized set of EOSs by taking into account calcu-
lations that describe nuclear matter in the outer crust [32,33]
and state-of-the-art descriptions of nuclear matter close to
nuclear-saturation density [30,31], together with a perturba-
tive QCD calculation for matter at densities exceeding that in
the core of neutron stars [34,35]. Because the EOS at
intermediate densities is not well known, we construct it
using piecewise polytropes, overall following Ref. [36].
Additionally, we account for the existence of phase tran-
sitions by considering EOSs that admit a jump in the energy
density between randomly chosen segments of the poly-
tropes [29,37–39], thus allowing for “twin-star” solutions
[40–42] (see Supplemental Material for details [43]).
Radius and tidal deformability constraints.—Figure 1

offers a complete view of the probability distribution
functions (PDFs) built using our ∼2 × 109 stellar models.

The top-left panel, in particular, shows the color-coded PDF
when only the observational constraints are imposed on the
maximum mass [22] and on the tidal deformability [1], i.e.,
2.01 < MTOV and Λ̃1.4 < 800 (see Fig. 3 of Supplemental
Material [43] for the PDF with only the maximum-mass
constraint). Indicated with red solid and dashed lines are the
values atwhich the corresponding cumulative distributions at
a fixed mass reach a value of 2σ and 3σ, respectively, thus
setting both a minimum and a maximum value for the radius
at that masswith a probability of∼95% and 99.7%.Note that
the PDF extends beyond the red lines but attains very small
values in these regions. The top-right panel shows instead the
PDF when, in addition to the lower limit, also an upper limit
is set on themaximummass, i.e., 2.01 < MTOV < 2.16 [15],
while keeping the observational constraint on the tidal
deformability. Note that the addition of this constraint
changes the PDF, decreasing the average value of the
maximum radius at a given mass. The bottom-left panel in
Fig. 1 shows the impact of the combined observational and
maximum mass constraints with that of a lower limit on the
tidal deformability as suggested by Ref. [14], i.e., after
considering 2.01 < MTOV < 2.16 and 400 < Λ̃1.4 < 800.
We note that, although the constraint Λ̃1.4 > 400 set by
Ref. [14] does not come with a systematic quantification of
the uncertainties, it is reasonable that such a lower limit exists
on the basis of the considerations made by Ref. [14].
The effect of these combined constraints is to significantly

reduce the variance in the small-radii region and to refine the

FIG. 1. PDFs of stellar radii. Top-left panel: PDF with only the observational constraints on the observed maximum mass and tidal
deformability for pure hadronic EOSs; top right: PDF when also an upper limit is set on the maximum mass; bottom left: PDF with the
combined constraints on maximum mass and tidal deformability; bottom right: the same as in the bottom left but for EOSs with a phase
transition; the thick black line at 12 km distinguishes the PDFs of hadronic twin stars, which represent only 5% of the total sample with
phase transitions. In all panels, the solid and dashed lines indicate the 2σ and 3σ confidence levels, respectively.
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range for the most likely radii at a given mass. Note that
the distribution now is not only restricted to a rather small
range in radii, but it is also peaked around the small-radii
end of the range. Because the EOS beyond nuclear-
saturation density is not known, the possibility of phase
transitions is also taken into account in the bottom-right
panel, where we do not impose the 400 < Λ̃1.4 constraint,
since it is based on a numerical simulation with EOSs
without phase transitions. Furthermore, by splitting the
panel at 12 km, we distinguish between the PDF of the
hadronic branch and the PDF of the “twin-star” branch,
namely, of all those stars that populate the small-radii
second stable branch typical of models with a phase
transition. Note that, while the PDF on the hadronic branch
is very similar to the top-right panel, that of the
twin-star branch is significantly different. In particular,
we find that the radius varies in a much broader range,
8.53 < R1.4=km < 13.74, and is not as constrained as the
hadronic branch; more importantly, the twin stars represent
only ∼5% of the total sample with phase transitions.
These last results are best appreciated when considering

cuts of the bottom panels in Fig. 1 at a fixed value of the
mass, e.g., 1.4. This is shown in the left panel in Fig. 2,
which reports the PDF as a function of the radius at that
mass, R1.4. Shown with different lines are the distributions
obtained when considering different constraints on the
maximum mass or on the tidal deformability (see the
legend). Note that when only the observational constraints
are imposed, either on the maximum mass or on the tidal
deformability, the distribution functions are rather broad
and flat, with a width of about almost 3 km (cf. red and
orange lines). On the other hand, when the combined
constraints are considered, as shown with the green-shaded
distribution, the variance decreases to about 2 km, and the
PDF also exhibits a peak around the small-radii tail of the
distribution. In this way, we are able to constrain 12.00 <

R1.4 < 13.45 at a 2σ confidence level, with a most likely
value of R̄1.4 ¼ 12.45. Although not shown in Fig. 2, we
note that the PDFs are very robust upon changes in the
upper limit of the maximum mass, when considering both
smaller (2.1) or larger (2.33) values for MTOV. Conversely,
the PDFs are rather sensitive to changes in Λ̃. This is
illustrated in the middle panel in Fig. 2, which shows how
the reference green-shaded PDF varies when, for M ¼ 1.4
and 2.01 < MTOV < 2.16, different intervals are consid-
ered for the tidal deformability (see the legend).
Considering a large lower limit for the tidal deformability,
e.g., from Λ̃1.4 > 400 to Λ̃1.4 > 500 (brown line), has the
effect of excluding the softest EOSs and hence to shift the
peak of the distribution to larger values, yielding a most
likely value of R̄1.4 ≃ 13.0 and a variance which is below
2 km. By contrast, changing the upper limit of the tidal
deformability, e.g., taking the less conservative observa-
tional limit Λ̃1.4 < 640 [1] (orange line) or an even more
conservative limit of Λ̃1.4 < 1200 (black line), does not
change the distribution significantly.
Finally, when considering the distribution of models

with phase transitions, the behavior in the right panel in
Fig. 2 is rather different. While the application of the
combined maximum mass and Λ̃1.4 constraints yields the
same results presented in the left panel (green- and orange-
shaded curves), with R̄1.4 ¼ 13.06 at a 2σ level, the twin-
star branch is much broader, i.e., 8.53 < R1.4 < 13.74.
Note that, although small-radii stars are possible, they are
not probable and that the twin-branch stars are only ∼2%
of the total sample with a phase transition for M ¼ 1.4.
Also, note that if a constraint such as Λ̃1.4 > 400 could be
applied to EOSs with phase transitions, it would only
sharpen the mean value of the PDF for twin stars but again
exclude the small-radii models of the hadronic branch
(orange curve).

FIG. 2. PDFs of stellar radii for a neutron star with mass 1.4. Reported with different lines are the PDFs with different constraints on
the maximum mass and tidal deformability (see the legends); the left and middle panels refer to pure hadronic EOSs, while the right one
to EOSs with a phase transition (cf. Fig. 1).
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Additional information on the tidal deformability is
presented in Fig. 3, which reports the PDF of Λ̃ for the
hadronic EOS, with again the white solid (dashed) lines
showing where the corresponding cumulative distributions
at a fixed mass reach a value of 2σ (3σ). Furthermore, we
indicate with gray dashed-dotted lines the 3σ values for
EOSs with a phase transition (cf. Fig. 4 of Supplemental
Material [43]). Shown instead with an arrow is the upper
limit deduced from GW170817 [1]. The PDF in Fig. 3,
which has not been presented before, points to three
interesting properties. First, at any given mass, the PDF
is highly asymmetrical and has a very sharp cutoff in the
lower hand of the tidal deformability, which goes from
Λ̃cutoff ∼ 825 at M ¼ 1.2 to Λ̃cutoff ∼ 285 at M ¼ 1.4 (see

the top panel in Fig. 3). Second, as the stellar mass
increases, the distribution tends to a more pronounced
peak and a smaller variance, with 0≲ Λ̃≲ 480 for
M ¼ 2.0. Finally, when considering a reference mass of
1.4, we can set Λ̃1.4 > 375ð290Þ, again at a 2σð3σÞ
confidence level, respectively. Similarly, the corresponding
value for a 1.3(1.5) mass becomes Λ̃1.3ð1.5Þ > 615ð230Þ at
2σ. When allowing for phase transitions, we instead find
that at 3σΛ̃1.4 > 35.5 and Λ̃1.7 < 461. Hence, a future
gravitational-wave detection of a high-mass merger with a
measured value of Λ̃1.7 > 461 can rule out twin stars below
that mass. This is the first time that such upper limits have
been provided on twin stars (see Supplemental Material
[43] for an extended discussion).
As a concluding but important remark, we illustrate in

Fig. 4 the impact that different treatments of the outer core
may have on the statistical properties of neutron-star radii. In
particular, the left panel inFig. 4 shows the samedistributions
discussed in the bottom-left panel in Fig. 1 when following
the treatment for the outer core discussed byRef. [46], which
is less conservative than the approach used here following
Ref. [30]. Similarly, the right panel in Fig. 4 reports the
corresponding distributions when the stellar models are built
using improved neutron-matter calculations [31]. Leaving
aside the details of the two different calculations, it is
interesting that estimates for the outer core that are only
slightly less conservative yield tighter constraints forR1.4 and
aPDFwith a smaller variance (the light-shaded red lines refer
toRef. [30]); in particular, we obtain a variance of∼1 kmat a
2σ level on the radii of low-mass stars. Figure 4 thus
highlights that a more accurate knowledge of the matter in
the outer core, i.e., for number densities in the range
0.08≲ n=fm−3 ≲ 0.21, can have an enormous impact on
the macroscopic properties of neutron stars. Any progress in
this direction will impact our understanding of compact
stars. For completeness, we comment that, while the

FIG. 3. PDF of the tidal deformability Λ̃ for pure hadronic
EOSs satisfying the constraintMTOV > 2.01. The white solid and
dashed lines show where the corresponding cumulative distribu-
tions at a fixed mass reach a value of 2σ and 3σ, respectively. Also
shown are the 3σ regions for an EOS featuring a phase transition.
Shown with an arrow is the upper limit deduced from
GW170817, while several cuts at fixed masses are shown in
the top panel.

FIG. 4. Left panel: The same as in bottom-right panel in Fig. 1, but when the neutron matter in the outer core is treated following the
approach of Ref. [46]. Right panel: The same as in the left panel but when considering the more recent prescription of Ref. [31] for the
outer core. Shown as light shaded lines are the 2=3σ values reported in the bottom-right panel in Fig. 1.
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results of Ref. [31] constrain the hadronic sector very well,
we found their effect on the twin-star branch to be less
pronounced.
Conclusions.—Using a parameterized construction of the

EOS which matches realistic nuclear-physics calculations
for the stellar crust at very low densities and perturbative
QCD calculations at very high densities, we have con-
structed more than two million different EOSs, with and
without phase transitions, that are physically plausible and
compatible with the observations on the maximum mass.
The corresponding PDFs have been studied to set con-
straints on the plausible values for the radii and tidal
deformabilities of neutron stars. In particular, we have
studied how the PDFs are affected by the imposition of new
constraints on the maximum mass and on the tidal
deformability that have been recently deduced via
GW170817. These additional constraints induce significant
changes in the PDFs, especially when they are imposed
simultaneously. While the statistical properties of the stellar
models vary only weakly with the maximum mass, con-
straints on the lower limit of the tidal deformability exclude
the softest EOSs and shift the peak of the distribution to
larger values, yielding a variance well below 2 km for
purely hadronic EOSs, i.e., 12.00 < R1.4 < 13.45 at a 2σ
level, with a most likely value of R̄1.4 ¼ 12.39. On the other
hand, the radii of twin stars are less constrained, namely,
8.53 < R1.4 < 13.74, with very compact stars possible but
not probable, so that R̄1.4 ¼ 13.06. We have also been able
to set upper limits on the tidal deformability of hybrid stars,
e.g., Λ̃1.7 < 461. For hadronic EOSs, an additional tight-
ening of the uncertainties is achieved with refined descrip-
tions of the outer core, thus calling for an improved
characterization of the EOS at intermediate densities.
Overall, our results show that GW170817 has had a
profound impact on our ability to constrain the maximum
mass, tidal deformability, and radii of neutron stars. New
detections will provide even tighter constraints on the EOS
of nuclear matter and restrict the radius of neutron stars to
below the 10% uncertainty [47–50].
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