
 

Comment on “Long-Range Repulsion Between
Spatially Confined van der Waals Dimers”

Recently, Sadhukhan and Tkatchenko (ST) derived for-
mulas for interaction energies of Coulomb-coupled two one-
(1D), two- (2D), and anisotropic three-dimensional (3D)
quantum harmonic oscillators (QHOs) [1], serving as models
for interacting spatially confinedmolecules.As a leading term
ofa1=Rn expansion,whereR is thedistancebetweentheQHO
centers, they find a repulsive Oð1=R5Þ term for all cases,
whereas for two isotropic 3D oscillators the leading (attrac-
tive) term isOð1=R6Þ, as expected for systems interacting via
dispersion forces only. In the 1D case, ST’s term reads

ϵ1 ¼ 2
α2ℏω

R5
; ð1Þ

with ω denoting the circular frequency of the fully separated
QHOs, α2 ¼ 3

4
ðq2ℏ=m2ω3Þ the quadrupole-quadrupole

polarizability of an uncoupled QHO, m the mass, and q the
magnitude of the charge of the oscillating particles, balanced
byoppositechargesat the spatially fixedcenters.FromEq. (1),
STconclude, “Theappearanceofquadrupolepolarizabilityα2
(…) in the leading repulsive term (…) indicates that ϵ1
corresponds to the mean-field energy of an instantaneous
quadrupole in the field generated by fluctuations in another
electronic fragment.”Moreover, ST reject that the interaction
is due to electrostatic effects stating, “We remark that even
when such confinement entails tiny modification of the
electron density (having no apparent effect on the electrostat-
ics), it can visibly affect the interactions stemming from
density fluctuations...” ST draw similar conclusions for the
case of interacting 2D and anisotropic 3D oscillators.
Here, we point out that the physical picture of repulsive

charge fluctuations implied by the statements of ST is
incorrect: it is rather the interaction between the static
quadrupole moments of 1D, 2D, and anisotropic 3D QHOs
(resulting from breaking of the spherical symmetry [2]) that
generates the repulsive Oð1=R5Þ contribution. In an eigen-
state of an overall electrically neutral 1D QHO, instanta-
neous dipole moments of equal magnitude but opposing
directions occur with identical probabilities. Charge and
dipole expectation values thus vanish but not the quadru-
pole moment—notice that antiparallel dipoles of equal
magnitude represent a quadrupole. The linear (i.e.,
extremely prolate [3]) average charge distribution of a
1D QHO thus creates an inhomogeneous static electric field
acting on a second QHOs quadrupole to yield (Eq. (3.2.8)
of Ref. [4] for θA ¼ θB ¼ ϕ ¼ 0)

ϵ1 ¼
6ΘA

kΘ
B
k

R5
; ð2Þ

where ΘA
k , Θ

B
k are the parallel components of the diagonal

traceless Cartesian quadrupole moments tensor for the
oscillators A and B, respectively. Since for the ground state

of identical 1D oscillators ΘA
k ¼ ΘB

k ¼ −qℏ=2mω, Eq. (2)
becomes numerically identical to Eq. (1) but provides the
correct physical picture which also leads to a different
experimental signature through considering differing spa-
tially confined atoms: their interaction energy must contain
products of properties of both [4]. If Eq. (2) were to describe
interactions between fluctuations in both systems, as sug-
gested by ST, it would have to include a product of two
polarizabilities. Also, static quadrupole moments of spatially
confined atoms, in principle, can be measured.
For the 2D case, ST consider planar axial-symmetric

oscillators. Their (extremely oblate [3]) charge distributions
generate perpendicular quadrupole components Θ⊥ ¼
qℏ=2mω. The leading term of the interaction energy
between two coplanar oscillators thus reads [4]

ϵ1 ¼
9ΘA⊥ΘB⊥
4R5

¼ 9q2ℏ2

16m2ω2

1

R5
; ð3Þ

numerically identical to Eq. (21) of Ref. [1], but again very
different in its physical content. The same conclusions for
the 1D and 2D models obtained from perturbation theory
were given in Ref. [2].
Since the static quadrupole moment vanishes for spheri-

cally symmetric systems [3], there is no Oð1=R5Þ term for
interacting isotropic 3D oscillators. In their anisotropic 3D
case, ST add a half-oscillator in the perpendicular direction
to the 2D oscillator, nowΘ⊥ ¼ qℏ=mω, and using the lhs of
Eq. (3), the final energy becomes identical to Eq. (79) of the
SupplementalMaterial of Ref. [1]. However, this model also
possesses a nonzero dipole moment, resulting in an addi-
tional repulsive interaction energy of ð4q2ℏ=mωπÞð1=R3Þ.
Lateral repulsion of physisorbed molecules with permanent
and surface-induced dipole moments has already been
included in early models of gaseous adsorption [5] and
improves modeling of the adsorption isotherm [6].
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