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We model power grids transporting electricity generated by intermittent renewable sources as complex
networks, where line failures can emerge indirectly by noisy power input at the nodes. By combining
concepts from statistical physics and the physics of power flows and taking weather correlations into
account, we rank line failures according to their likelihood and establish the most likely way such failures
occur and propagate. Our insights are mathematically rigorous in a small-noise limit and are validated with
data from the German transmission grid.
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Understanding cascading failures in complex networks is
of great importance and has received a lot of attention in
recent years [1–17]. Despite proposing different mecha-
nisms for their evolution, a common feature is that cascades
are triggered by some external event. This initial attack is
chosen either (i) deliberately, to target the most vulnerable
or crucial network component, or (ii) uniformly at random,
to understand the average network reliability. This dis-
tinction led to the insight that complex networks are
resilient to random attacks but vulnerable to targeted
attacks [7,18,19]. However, both lead to the direct failure
of the attacked network component.
In this Letter, we focus on networks in which edge

failures occur in a fundamentally different manner.
Specifically, we consider networks where fluctuations of
the node inputs can trigger edge failures. The realization
(which we call configuration) of the noise at the nodes not
only is the cause of edge failures but can also impact the
way they propagate in the network.
We present our results in the context of power grids that

transport electricity generated by solar and wind parks. In
power grids, line failures can arise when the network is
driven from a stable state to a critically loaded state by
external factors; intermittent power generation at the nodes
causes random fluctuations in the line power flows,
possibly triggering outages and cascading failures. Thus,
line failures can emerge indirectly due to the interplay
between noisy correlated (due to weather) power input at
the nodes, the network structure, and power flow physics.
This interplay is challenging to analyze, yet this problem is
urgent as the penetration of renewable energy sources is
increasing [20,21].
We analyze this interplay using statistical physics and

large-deviations theory. We consider a parsimonious static
stochastic model similar to Ref. [22], introduce a scaling
parameter ε describing the magnitude of the noise, and
consider the regime ε → 0. In the limit, we can identify the

most vulnerable lines and explicitly determine the most
likely configuration of power inputs leading to failures and
subsequent propagating failures. These results are validated
using real data for the German transmission network.
Previous works applying large-deviations techniques to
problems in complex networks dynamics, such as epidemic
extinction and biophysical networks, include Refs. [23,24].
We model a transmission network by a connected graph

Gwith n nodes representing the buses andm directed edges
modeling transmission lines. The nominal values of net
power injections at the nodes are given by μ ¼ fμigi¼1;…;n.
We model the stochastic fluctuation of the power injections
around μ, due to variability in renewable generation, by
means of the random vector p ¼ fpigi¼1;…;n, which is
assumed to follow a multivariate Gaussian distribution with
density

φðxÞ ¼ exp½− 1
2
ðx − μÞTðεΣpÞ−1ðx − μÞ�
ð2πÞn=2 detðεΣpÞ1=2

; ð1Þ

with εΣp ∈ Rn×n being the covariance matrix of p. In our
theoretical analysis, we assume that Σp is known and
let ε → 0.
The Gaussian assumption is debatable, for both solar and

wind. While consistent with atmospheric physics [25] and
recent wind park statistics [26,27], different models are
preferred for different timescales [28–31]. An extension of
our framework to the dynamic model in Ref. [31] looks
promising (using the Freidlin-Wentzell theory as in
Ref. [32]). For a static non-Gaussian extension, see [33].
Assuming the vector μ has zero sum and using the dc

approximation [20], the line power flows f ¼ ffigi¼1;…;m
are given by

f ¼ Vp; ð2Þ
where V is anm × nmatrix encoding the grid topology and
parameters (i.e., line susceptances). The dc approximation
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is commonly used in transmission system analysis [52–55].
More realistic nonlinear models based on ac power flows
[56] may be analyzed leveraging the contraction princi-
ple [57].
The total net power injected in the network

P
n
i¼1 pi is

nonzero, as p is random. Automated affine response and
redispatch mechanisms take care of this issue in power
grids. Mathematically, this corresponds to a “distributed
slack” in our model: The total power injection mismatch is
distributed uniformly among all nodes (the matrix V
accounts for this; see [33]).
In view of Eqs. (1) and (2), the line power flows f also

follow a multivariate Gaussian distribution with mean ν and
covariance matrix εΣf. The vector ν ¼ Vμ ∈ Rm describes
the nominal line flows, while the covariance matrix
εΣf ¼ εVΣpVT describes the correlations between line
flow fluctuations, taking into account both the correlations
of the power injections (encoded by Σp) and correlations
created by the network topology due to power flow physics
(Kirchhoff’s laws) via V.
A line overloads if the absolute amount of power flowing

in it exceeds a given line threshold. We assume that such
overloads immediately lead to the outage of the corre-
sponding line, to which we will henceforth refer simply as a
line failure. The rationale behind this assumption is that
there are security relays on high-voltage transmission lines
performing an emergency shutdown as soon as the current
exceeds a dangerous level. Without such mechanisms, lines
may overheat, sag, and eventually trip.
We can express the line flows in units of the line

threshold by incorporating the latter in the definition of
V [33], so that f is the vector of normalized line power
flows and the failure of line l corresponds to jflj ≥ 1. We
let the power grid operate on average safely by assuming
that maxl¼1;…;mjνlj < 1, so that only large fluctuations of
line flows lead to failures.
We are most interested in scenarios where power grids

are highly stressed, meaning that the nominal power
injections fμigi¼1;…;n are such that the corresponding

nominal line power flows fνlgl¼1;…;m are close to their
thresholds. Such a stress could be caused by very high wind
generation [58].
An illustrative scenario is reported in Fig. 1(a), which

depicts a snapshot of nominal line flows on the SciGRID
German network [59]. SciGRID is a detailed model of the
actual German transmission network with n ¼ 585 buses
and m ¼ 852 lines that we use as a main illustration. The
data set includes load and generation time series, line limits,
grid topology, and generation costs. In our case study, we
obtain μ by solving an optimal power flow (OPF) problem
[60] based on realistic data for wind and solar generation,
and we estimate εΣp using autoregressive moving average
models; for details, see Supplemental Material [33], which
also describes a setting covering conventional controllable
power plants.
We now turn to the analysis of emergent failures and

their propagation using large-deviations theory [61]. We
begin by deriving the exponential decay of probabilities of
single line failure events jflj ≥ 1 for l ¼ 1;…; m. As line
power flows are Gaussian, we obtain (see Example 3.1 in
Ref. [61]) that

Il ¼ −lim
ε→0

ε logPεðjflj ≥ 1Þ ¼ ð1 − jνljÞ2
2σ2l

; ð3Þ

where σ2l ¼ ðΣfÞll. We call Il the decay rate of the failure
probability of line l. Thus, for small ε, we approximate the
probability of the emergent failure of line l as

Pðjflj ≥ 1Þ ≈ expð−Il=εÞ ¼ exp

�

−
ð1 − jνljÞ2

2εσ2l

�

ð4Þ

and that of the first emergent failure as

Pðmax
l

jflj ≥ 1Þ ≈ expð−min
l

Il=εÞ: ð5Þ

These approximations for failure probabilities may not be
sharp, in general, even when ε is small, since all terms that

FIG. 1. (a) Nominal line flows jνlj at 11 am. (b) True overload probabilities log10 Pðjflj ≥ 1Þ at 11 am. (c) Top 5% of most likely lines
to fail (red) at 11 am, according to (3), and nominal injections from renewable sources.
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are decaying subexponentially in 1=ε are ignored.
Nevertheless, Eq. (4) is quite useful for ranking purposes,
allowing us to explicitly identify the lines that are most
likely to fail. To verify this empirically, we note that the
expression in Eq. (4) depends only on the product
εσ2l ¼ εðVΣpVTÞll and thus, ultimately, only on the
product εΣp, which in our case study we estimate directly
from the SciGRID data; see [33].
Figure 1(b) shows the heat map for the exact line failure

probabilities Pðjflj ≥ 1Þ, for the same day and hour as in
Fig. 1(a): It is clear that a larger jνlj does not necessarily
imply a higher chance of failure. Figure 1(c) depicts the 5%
most likely lines to fail, ranked according to Il. The
ranking based on the large-deviations approximation suc-
cessfully recovers the most likely lines to fail and, in fact,
yields the same ordering as the one based on exact
probabilities [33], thus providing an accurate indicator of
system vulnerabilities.
Figure 1(c) also illustrates the nominal renewable gen-

eration mix: The buses housing stochastic power injections
have different colors [blue (light blue) for wind offshore
(onshore), yellow for solar] and sizes proportional to the
absolute values of the corresponding nominal injections.
Many vulnerable lines are located where the most renew-
able energy production occurs. However, the interplay
between network topology, power flows physics, and
correlation in power injections caused by weather fluctua-
tions results in a spread-out arrangement of vulnerable
lines, which is hard to infer by looking at nominal
values only.
We proceed with an analysis of how emergent failures

occur, using again large-deviations theory. In particular, we
provide an explicit estimate of the most likely power
injection that caused a specific emergent failure. To this
end, we fix a line l and consider the conditional distribu-
tion of p, given jflj ≥ 1. The mean of this distribution
greatly simplifies as ε → 0 to

pðlÞ ¼ arginf
p∈Rn∶jêTlVpj≥1

1

2
ðp − μÞTΣ−1

p ðp − μÞ: ð6Þ

If νl ≠ 0, the solution is unique and reads

pðlÞ ¼ μþ ½sgnðνlÞ − νl�
σ2l

ΣpVT êl; ð7Þ

where sgnðaÞ ¼ 1 if a ≥ 0 and −1 otherwise and êl ∈ Rm

is the lth unit vector. As ε → 0, the conditional variance of
p given jflj ≥ 1 decreases to 0 exponentially fast in 1=ε,
yielding that the conditional distribution of p given
jflj ≥ 1 gets sharply concentrated around pðlÞ [33].
We interpret pðlÞ as the most likely power injection

profile, conditional on the failure of line l. The corre-
sponding line power flow profile fðlÞ ¼ VpðlÞ is

fðlÞk ¼ νk þ
½sgnðνlÞ − νl�

σ2l
Covðfl; fkÞ; ∀ k ≠ l: ð8Þ

As such, our framework provides more explicit information
than the approach in Ref. [62], which approximates the
most likely way events happen using the mode, without
leveraging large deviations. In our validation experiments,
we found that the error between pðlÞ and E½pjjflj ≥ 1� is
typically less than 1% of the nominal values [33].
A numerical illustration is given in Fig. 2(b).
A key finding is that an emergent line failure does not

occur due to large fluctuations only in neighboring nodes
but as a cumulative effect of small unusual fluctuations in
the entire network “summed up” by power flow physics
and correlations in renewable energy. Such an emergent
failure requires every line flow to be driven to an unusual
state fðlÞk , which deviates from the nominal value νk by an
amount proportional to the covariance Covðfl; fkÞ, in view
of Eq. (7).

FIG. 2. (a) After the emergent failure of line 27 (red), six additional lines (orange) fail, 4 pm. (b) Most likely power injection pðlÞ
causing the isolated failure of line 720 (red) and subsequent failures (orange). The bus sizes reflect how much pðlÞ deviates from μ at 11
am (red, positive deviations; blue, negative). Left, with correlation in noise; right, without correlation in noise (setting to 0 all the off-
diagonals of Σp).
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We continue by investigating the propagation of failures,
combining our results describing the most likely power
injections configuration leading to the first failure and the
power flow redistribution in the network afterwards. To this
end, we first differentiate between different types of line
failures, by assessing whether the most likely way for
failure of line l to occur is as (i) an isolated failure, if

jfðlÞk j < 1 for all line k ≠ l, or (ii) a joint failure, if there

exists some other line k ≠ l such that jfðlÞk j ≥ 1.
Any type of line failure(s) cause(s) a global redistribution

of the line power flows according to Kirchhoff’s laws,
which could trigger further outages and cascades. In our
setting, the power injections configuration pðlÞ redistributes
across an altered network G̃ðlÞ (a subgraph of the original
graph G) in which line l (and possible other lines, in case
of a joint failure) has been removed, increasing stress on the
remaining lines. The way this redistribution happens on
G̃ðlÞ is governed by power flow physics, and we assume
that it occurs instantaneously. Extending this to dynamic
models [63,64] is a natural future topic, as transient
oscillatory effects may aggravate the impact of line failures.
The power flow redistribution amounts to computing a

new matrix Ṽ linking the power injections and the new
power flows, which can be constructed analogously to V
[33]. The most likely power flow configuration on G̃ðlÞ

after redistribution is f̃ðlÞ ¼ ṼpðlÞ.
In the special case of an isolated failure (say, of line l),

it is enough to calculate the vector ϕðlÞ ∈ Rm−1 of
(normalized) redistribution coefficients, known as line
outage distribution factors (LODF) [65]. The quantity
ϕðlÞ
j takes values in ½−1; 1�, and jϕðlÞ

j j represents the
percentage of power flowing in line l that is redirected
to line j after the failure of the former. The most likely
power flow configuration on G̃ðlÞ after redistribution then
equals f̃ðlÞ ¼ ffðlÞk gk≠l þ fðlÞl ϕðlÞ, where fðlÞl ¼ �1
depending on the way the power flow is most likely to
exceed the threshold 1. The power flow configuration f̃ðlÞ

can be efficiently used to determine which lines sub-
sequently fail, by checking for which k we have
jf̃ðlÞk j ≥ 1; see [33].
There is much evidence that failures propagate non-

locally in power grids [66–70]. To analyze this in our
framework, we first consider a ring network with μ ¼ 0 and
Σp ¼ I. In this network, there are two paths along which
power can flow between any two nodes, using the con-
vention that a positive flow corresponds to a counterclock-
wise direction. If line l fails, the power originally flowing
on line l must now flow on the remaining path in the
opposite direction. To make this rigorous, we show in
Ref. [33] that ϕðlÞ

k ¼ −1 for every k ≠ l. As power flows
must sum to zero by Kirchhoff’s law, neighboring lines
tend to have positively correlated power flows, while flows
on distant lines exhibit negative correlations. Hence, the
power injections that make the power flows in line l exceed

the line threshold (say, by becoming larger than 1) also
make the power flows in the antipodal half of the network
negative. These will go beyond the line threshold −1 after
the power flow redistributes; cf. Fig. 3.
In the SciGRID example, Fig. 2(a) shows how the

emergent isolated failure of line l ¼ 27 causes the failure
of six more lines k1;…; k6, two of which are far way from
the original failure. For validation purposes, we found
numerically that Pðline kj fails ∀ j ¼ 1;…; 6jjf27j ≥ 1Þ ≥
0.9987. Conversely, the failure of line 27 under the nominal
power injection profile leads to only two subsequent
failures. The nontypical input caused other lines to be
more loaded than expected, and these lines get more
vulnerable as the cascades progresses, resulting in more
subsequent failures.
To validate this insight, we have looked at the first two

stages of emergent cascading failures for several IEEE test
networks and compare them with those of classical cascad-
ing failures, obtained using nominal power injection values
rather than the most likely ones and deterministic removal
of the initial failing line; see [33] for a precise description of
the experiment. As before, emergent cascades tend to lead
to a higher number of subsequent failures in each stage.
A nondiagonal noise matrix Σp exacerbates these effects.

Experiments [see Fig. 2(b)] with our SciGRID case study
suggest that, if there is a correlation in noise, for example,
due to fluctuations in weather patterns, the number of
subsequent failures can become higher. Furthermore, it is
easier for a failure to be triggered by many small disturb-
ances across the network, compared to the case where these
correlations are not taken into account. In the latter case, we
see a more local effect with relatively larger disturbances.
In conclusion, we illustrated the potential of concepts

from statistical physics and large-deviations theory to
analyze emergent failures and their propagation in complex
networks. Exogenous noise disturbances at the nodes,
potentially amplified by correlations, push a complex
network into a critical state in which edge failure may
emerge. Large-deviations theory provides a tool to rank
such failures according to their likelihood and predicts how
such failures most likely occur and propagate. When an

FIG. 3. Left: Most likely power injections pðlÞ leading to the
failure of line l (orange), visualized using the color and size of
the nodes (red, positive deviations; blue, negative), together with
power flows fðlÞk . Right: Situation after the power flow redis-
tribution with three subsequent failures and the values
f̃ðlÞk ¼ fðlÞk − 1, k ≠ l.
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emergent edge failure occurs, its impact on the network can
be more significant than a purely exogenous failure,
possibly resulting in cascades that propagate quicker than
in a classical vulnerability analysis.
The accuracy of the small noise limit has been validated in

our case study, making the case for applying large-deviations
techniques to more realistic models. In Ref. [33], we propose
a promising economic application of our approach, showing
how our framework can shed light on the trade-off between
network reliability and societal costs.
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