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We present a new proposal to study the helicity-dependent dihadron fragmentation functions (DiFF),
which describe the correlations of the longitudinal polarization of a fragmenting quark with the transverse
momenta of the produced hadron pair. Recent experimental searches for this DiFF via azimuthal
asymmetries in back-to-back hadron pair production in eþe− annihilation by the BELLE Collaboration did
not yield a signal. Here we propose a new way to access this DiFF in eþe− annihilation, motivated by the
recently recalculated cross section of this reaction, which explains why there was in fact no signal for the
BELLE Collaboration to see. In this new approach the azimuthal asymmetry is weighted by the virtual
photon’s transverse momentum square multiplying sine and cosine functions of difference of azimuthal
angles of relative and total momentum for each pair. The integration over the virtual photon’s transverse
momentum has the effect of separating the convolution between the helicity-dependent DiFFs in the quark
and antiquark jets and results in a nonzero collinear expression containing Fourier moments of helicity-
dependent DiFFs. A second new measurement is also proposed for two-hadron production in semi-
inclusive deep inelastic scattering, where the asymmetry is weighted in a similar way for a single pair. This
results in a collinear factorized form of the asymmetry, which includes the quark helicity parton distribution
function and the same helicity-dependent DiFF, as in eþe− production and will allow us to check the
universality of this DiFF.
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Understanding quark hadronization remains one the
most challenging problems in modern hadronic physics.
In hard inclusive reactions, this process is encoded by the
so-called fragmentation functions (FF) for the detection of
a single semi-inclusive final state hadron and by the so-
called dihadron fragmentation functions (DiFF) for hadron
pair production. In the case of the hadronization of an
unpolarized quark where the observed hadrons are unpo-
larized, these fragmentation functions can be interpreted
as probability densities for observing the given type of
hadron. When the initial quark is polarized, the modula-
tions of the azimuthal distributions of the final state hadrons
can act as polarimeters. This is a consequence of correla-
tions between the polarization of the quark and the trans-
verse momenta of the produced hadrons. In fact, such
correlations have been experimentally observed between the
transverse polarization of the quark and the transverse
momenta of the hadrons, both for one hadron (Collins effect)
and two hadrons (interference DiFF) in semi-inclusive

production. On the other hand, such correlations have not
yet beenobserved for a longitudinally polarizedquark,which
is only possible when at least two unpolarized hadrons are
detected. In this Letter, we address this issue by proposing
two new experimental measurements of such correlations,
the first ineþe− annihilation and the second in semi-inclusive
deep inelastic scattering (SIDIS).
The measurements of two-hadron azimuthal asymme-

tries in the semi-inclusive process have been recently used
to access the quark transversity parton distribution function
(PDF) inside the nucleon [1–3], using a combined analysis
of two-hadron production in SIDIS and back-to-back two-
hadron pair creation in eþe− annihilation. A key role here
is played by the so-called interference DiFF (IFF), that
describes a correlation between the transverse spin polari-
zation of a fragmenting quark with the relative transverse
momentum of the produced hadron pair. Similarly, the
helicity-dependent DiFF, G⊥

1 , describes a correlation
between the longitudinal polarization of a fragmenting
quark and the transverse momenta of the pair of hadrons.
Its importance lies to a considerable extent in its relation-
ship to the phenomenon of longitudinal jet handedness,
which was predicted 25 years ago [4] but has not yet been
observed. It is also of interest because it has no analog in
single unpolarized hadron production.
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The first proposed azimuthal asymmetry for measuring
G⊥

1 , in back-to-back two-hadron pair creation in e
þe−, was

made over ten years ago in [5]. A subsequent experimental
search for this asymmetry by the BELLE Collaboration did
not yield a signal [6,7], while their previous measurements
for the IFF signal were sizable [8]. The model calculations
of the specific form of the integrated G⊥

1 entering this
asymmetry was recently performed in [9], producing a
result that is smaller than that for IFF calculated within the
same model, but still non-negligible.
Recently, motivated by the findings in [10], we rederived

the cross section expressions for dihadron production in
eþe− annihilation [11], and found a number of disagree-
ments with the previous calculations. The two most
important conclusions were the resolution of the apparent
inconsistencies between the definitions of IFF entering the
two mentioned processes and the realization that the
originally proposed azimuthal asymmetry for determining
G⊥

1 in eþe− annihilation should vanish.
In this Letter, we propose a new measurement to access

G⊥
1 in eþe− annihilation, based on the new expression for

the cross section. An experimental search using this method
would be very important to gain any knowledge on G⊥

1 .
Such information is vital in our understanding of the
hadronization process, and together with the measurements
of IFF provide a critical test for the models. Moreover, we
also propose a new measurement in SIDIS, which will give
access to G⊥

1 multiplied by the collinear nucleon helicity
PDF, which itself is well determined from a number of
inclusive and semi-inclusive measurements. Thus, the
measurements of the asymmetries both in eþe− and
SIDIS will allow us to test the universality of G⊥

1 entering
these two processes. We note that the universality of the
unintegrated DiFFs entering in both SIDIS and eþe−
reactions has not yet been explicitly proven when including
the gauge link in the quark fragmentation correlator, though
the universality of the DiFFs integrated over the total
transverse momenta of the hadron pair was demonstrated
in Ref. [12].
The eþe− asymmetry.—The process we consider is

eþe− → h1h2 þ h̄1h̄2 þ X, where the initial electron and
positron are unpolarized, and the two-hadron pairs h1h2
and h̄1h̄2 are emitted back to back. The electron and the
positron carry momenta l and l0, respectively. The final
state hadrons h1, h2 are assigned momenta P1, P2 and
masses M1, M2, while the second hadron pair h̄1, h̄2 are
assigned momenta P̄1, P̄2 and masses M̄1, M̄2. The total
and the relative momenta of the hadron pairs are defined as
P≡ Ph ¼ P1 þ P2, R ¼ 1

2
ðP1 − P2Þ, while their invariant

mass is defined as M2
h ¼ P2

h. In the leading order approxi-
mation for the hard scattering part of this process, the eþe−
pair annihilates into a virtual photon with momentum
q ¼ lþ l0. In turn, this decays into a quark and antiquark
a, ā carrying momenta k and k̄. The hard scale Q in this

work is defined by Q2 ¼ q2 and is assumed to be much
smaller than the Z boson mass. In the following, we will
ignore all the contributions of order 1=Q. The quark and
antiquark hadronize and produce two back-to-back jets of
particles, each containing one of the hadron pairs consid-
ered here. The other kinematical variable entering the cross
section is y ¼ Ph ⋅ l=Ph ⋅ q ≈ l−=q−, where the light-cone
components of a four-vector a are defined as a ¼
ðaþ; a−; aTÞ, and a� ¼ ð1= ffiffiffi

2
p Þða0 � a3Þ. The cross sec-

tion also depends on the light-cone momentum fractions of
the produced hadrons zi ¼ Pþ

i =k
þ and their total and

relative combinations z ¼ z1 þ z2 and ξ ¼ z1=z. The coor-
dinate system used in the analysis is defined in the center of
mass frame of colliding eþe− by taking the ẑ opposite to the
three-momentum P̄h, and the components of the vectors
perpendicular to ẑ are denoted with a subscript ⊥, see
Fig. 1. In this frame q⊥ ¼ 0. It is also useful to define a
reference frame where the total momenta of both hadron
pairs are collinear [5], and the components of three vectors
perpendicular to them is denoted by T. In this frame the
virtual photon has a transverse momentum component
qT ¼ −Ph⊥=z, while the difference between the T and ⊥
components of the observed hadron momenta is of the
order 1=Q and will be neglected here. Note, that the
azimuthal angle of qT and Ph are related as φq ¼ φh þ π.
The cross section expression for this process at leading

twist was originally derived in [5], using the “leading hadron
approximation” Ph ⋅ P̄h ∼Q2. It contains convolutions of
DiFFs encoding the hadronization of the quark and the
antiquark. The new derivation, in [11], corrected several
errors in the previous result. The relevant part of the cross
section here contains the unpolarized and helicity-dependent
DiFFs, and the azimuthal dependence is determined by

dσe
þe−→ðh1h2Þðh̄1h̄2ÞX
U;L

d2qTdφRdφR̄d
7V

¼
X
a;ā

e2a
3α2

πQ2
z2z̄2AðyÞ

×

�
F ðDa

1D̄
ā
1Þ−F

�ðRT ×kTÞ3
M2

h

ðR̄T × k̄TÞ3
M̄2

h

G⊥a
1 Ḡ⊥ā

1

��
;

ð1Þ

FIG. 1. The kinematics of two back-to-back dihadron pair
creation in eþe− annihilation.
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where φR, φR̄ are the azimuthal angles of RT and R̄T . The
symbol d7V ≡ dzdξdRTdz̄dξ̄dR̄Tdy denotes the remaining
phase space element. The subscript 3 denotes the z compo-
nent of the vector. The electromagnetic coupling constant
is denoted as α, while the charges of the quarks are ea,
and AðyÞ ¼ 1

2
− yþ y2. The convolution F is defined as

F ½wDaD̄ā� ¼
Z

d2kTd2k̄Tδ2ðkT þ k̄T − qTÞ

× wðkT; k̄T;RT; R̄TÞDaDā: ð2Þ
The fully unintegrated DiFFs entering these expressions
depend only on the relative azimuthal angles between
kT , RT and k̄T , R̄T , respectively: Daðz; ξ; k2T;R2

T; kT ⋅ RTÞ,
Dāðz̄; ξ̄; k̄2T; R̄2

T; k̄T · R̄TÞ.
In order to gain information about the DiFFs entering the

cross section, it is helpful to use their decomposition into
Fourier cosine series with respect to the relative azimuthal
angle φKR ≡ φk − φR

Da(z; ξ; k2T;R
2
T; cosðφKRÞ)

¼ 1

π

X∞
n¼0

cosðnφKRÞ
1þ δ0;n

Da;½n�ðz; ξ; k2T;R2
TÞ: ð3Þ

The unweighted integrated cross section over qT, φR, φR̄,
ξ, ξ̄ contains only the unpolarized DiFFs

h1i ¼
Z

dσe
þe−→ðh1h2Þðh̄1h̄2ÞX
U;L × 1

¼ 3α2

πQ2
AðyÞ

X
a;ā

e2aDa
1ðz;M2

hÞD̄ā
1ðz̄; M̄2

hÞ; ð4Þ

where the integrated zeroth Fourier moment of the unpo-
larized DiFF is defined as

Da
1ðz;M2

hÞ ¼ z2
Z

d2kT

Z
dξDa;½0�

1 ðz; ξ; k2T;R2
TÞ: ð5Þ

Here, R2
T has been replaced by the invariant mass square

M2
h of the hadron pair, per convention. It is easy to see that

the previously proposed measurement of an asymmetry
containing G⊥

1 in [5] simply vanishes

hcos½2ðφR − φR̄Þ�i ¼ 0: ð6Þ
In fact, it is easy to demonstrate that hfðφR;φR̄Þi ¼ 0 for an
arbitrary f depending only on R and R̄.
We note that we can extract information about the term

containing G⊥
1 in the cross section in Eq. (1), by evaluating

a moment that would contain a weight of sinðφKRÞ
sinðφK̄ R̄Þ, multiplied by any cosine Fourier harmonics of
the same angles. In the experimental analysis, this can be
achieved by employing various combinations of the meas-
urable azimuthal angles of φq ¼ φh þ π and φR, φR̄. For
example, sinðmφqRÞ sinðnφqR̄Þ, where φqR ≡ φq − φR and

φqR̄ ≡ φq − φR̄, should yield a nonvanishing result involv-
ing convolutions of various Fourier cosine moments ofG⊥a

1

and G⊥ā
1 for any m, n > 0. Such weighted integrals of the

cross section should in principle also contain Fourier
moments of the unpolarized DiFFs, but no contributions
form transverse polarization dependent DiFFs. The con-
volution in Eq. (2), containing the δ2ðkT þ k̄T − qTÞ
function from transverse momentum conservation, can
be factorized into a product of weighted Fourier moments
of the helicity-dependent DiFFs by introducing an addi-
tional weighting factor q2T. The contribution ofD1 moments
can be canceled out by forming linear combinations of
different asymmetries. For example, for the case m ¼ 1,
n ¼ 1

�
q2T(3 sinðφqRÞ sinðφqR̄Þ þ cosðφqRÞ cosðφqR̄Þ)

MhM̄h

�

¼ 12α2AðyÞ
πQ2

X
a;ā

e2a
	
G⊥a;½0�

1 −G⊥a;½2�
1 ÞðḠ⊥ā;½0�

1 −G⊥ā;½2�
1



;

ð7Þ
where the dimensionless integrated nth moments are

G⊥a;½n�
1 ðz;M2

hÞ≡ z2
Z

d2kT

Z
dξ

×

�
k2T
2M2

h

� jRT j
Mh

G⊥a;½n�
1 ðz; ξ; k2T;R2

TÞ: ð8Þ

The combination of the zeroth and the second Fourier
cosine moments arises from the trigonometric relation
sin2ðφKRÞ ¼ ½1 − cosð2φKRÞ�=2, where both terms couple
to the corresponding Fourier cosine moment in the decom-
position (3). For convenience, we define the integrated
helicity-dependent DiFF as

G⊥a
1 ðz;M2

hÞ≡G⊥a;½0�
1 ðz;M2

hÞ −G⊥a;½2�
1 ðz;M2

hÞ: ð9Þ
Note, that this definition differs from that in [5]. Our recent
model calculations of Fourier cosine moments of G⊥

1 in [9]
suggest a sizable analyzing power for such a combination,
although in the model calculations we used kTRT weighting
when defining the Fourier cosine moments ofG⊥

1 instead of
k2TRT used in Eq. (8).
The corresponding azimuthal asymmetry, which is the

ratio of the weighted moment in Eq. (7) to the unweighted
one in Eq. (4), can be expressed as

A⇒
eþe−ðz; z̄;M2

h; M̄
2
hÞ ¼ 4

P
a;āG

⊥a
1 ðz;M2

hÞG⊥ā
1 ðz̄; M̄2

hÞP
a;āD

a
1ðz;M2

hÞDā
1ðz̄; M̄2

hÞ
:

ð10Þ
The idea of using transverse-momentum weighting to

break up the momentum convolutions in single hadron
azimuthal asymmetries was first employed a number of
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years ago in [13,14] and later in [15]. The first experimental
results motivated by that work have only just been released
by the COMPASS Collaboration [16,17]. In recent years,
an improved method of Bessel-weighted asymmetries has
been proposed in [18] and tested for viability using
Monte Carlo simulations in [19]. Though our proposed
asymmetry can be also expressed in terms of Bessel-
weighted functions, we leave that for future work.
The azimuthal asymmetries in SIDIS.—We next consider

the SIDIS process with two observed final state hadrons
lþ N → l0 þ h1h2 þ X. We use the expression for the fully
unintegrated cross section of this process, derived in [20],
to suggest another weighted asymmetry involving G⊥

1 .
Here we use the standard kinematics of SIDIS [20],

where the initial and final state leptons are assigned
momenta l and l0, the initial nucleon N has mass M,
momentum P, and polarization S. The final state hadrons
are again assigned momenta P1, P2 and masses M1, M2.
The single-photon exchange approximation is used, where
the momentum of the intermediate virtual photon is q ¼
l − l0 and the hard scale is defined by Q2 ¼ −q2. The γ�N
center of mass coordinate system is chosen, where ẑ axis is
taken along the three-momentum of the virtual photon q,
and the x̂ axis along the transverse momentum of leptons.
In the parton picture, a quark with momentum p absorbs
the virtual photon, acquiring momentum k ¼ pþ q. This
quark then hadronizes, producing the two observed hadrons
in a jet of particles. The relevant variables are the light-cone
momentum fraction of the initial quark x ¼ pþ=Pþ, its
transverse momentum pT , as well as the transverse momen-
tum of the final quark kT . The light-cone momentum
fractions of the final state hadrons are defined with respect
to k−, that is z1;2 ¼ P−

1;2=k
−. The relative and the total

transverse momenta and light-cone momentum fractions
are defined in the same manner as for eþe− annihilation.
Using a Lorentz transform, it can be easily shown that
qT ¼ −Ph⊥=z. Finally, the momentum fraction y is defined
here as y ¼ ðP ⋅ qÞ=ðP ⋅ lÞ ≈ l−=q−.
The cross section for this process can be decomposed into

various terms according to the polarization of the incident
lepton beam and the target nucleon. The two cases of interest
here are σUU and σUL, describing the unpolarized and target
longitudinal polarization dependent parts of the cross sec-
tion, respectively. Here we only show the explicit depend-
ence of these two terms on the relevant azimuthal angles

dσUU

d2Ph⊥dφRd6V 0 ¼
X
a

α2e2a
πyQ2

A0ðyÞGðfa1Da
1Þ; ð11Þ

and

dσUL

d2Ph⊥dφRd6V 0

¼ −SL
X
a

α2e2a
πyQ2

A0ðyÞG
�ðRT × kTÞ3

M2
h

ga1LG
⊥a
1

�
; ð12Þ

where d6V 0 ≡ dzdξdM2
hdxdydφS, φS is the azimuthal

angle of the initial nucleon’s transverse polarization ST ,
A0ðyÞ ¼ 1 − yþ y2=2, SL is the longitudinal polarization of
the nucleon, and the SIDIS convolution is defined as

G½wfqDq�≡
Z

d2pT

Z
d2kTδ2

�
kT − pT þ Ph⊥

z

�

× wðpT; kT;RTÞfqðx; pTÞ
×Dqðz; ξ; k2T; R2

T; kT ⋅ RTÞ: ð13Þ
The unweighted integral of the cross section over Ph⊥,

φR, ξ, φS yields a product of the unpolarized PDF and
the DiFF

h1i ¼
Z

dσUU × 1 ¼
X
a

2α2e2a
yQ2

A0ðyÞfa1ðxÞz2Da
1ðz;M2

hÞ:

ð14Þ
To access G⊥

1 , we again need to weight the cross section
with a trigonometric factor containing only the first Fourier
sine mode sinðφR − φkÞ and an arbitrary Fourier cosine
mode cos½mðφR − φkÞ�, m ≥ 0. The simplest modulation
containing the observable angles, that would result in such
a combination would be sinðφh − φRÞ. Here again, by
weighting this modulation by a factor of Ph⊥, we can break
up the transverse momentum convolution in (13) into a
product of two independent terms�

Ph⊥ sinðφh − φRÞ
Mh

�

¼
Z

dσUL
Ph⊥ sinðφh − φRÞ

Mh

¼ SLA0ðyÞ
X
a

2α2e2a
yQ2

ga1ðxÞzG⊥a
1 ðz;M2

hÞ; ð15Þ

where

ga1ðxÞ ¼
Z

d2pTga1Lðx; p2
TÞ ð16Þ

is the nucleon collinear helicity PDF, while the combina-
tion of the Fourier cosine moments of the helicity-
dependent DiFF, G⊥a

1 ðz;M2
hÞ, is exactly that appearing

in the eþe− annihilation asymmetry in Eq. (9).
Thus, the proposed azimuthal asymmetry can be

expressed as

A⇒
SIDISðx; z;M2

hÞ ¼ SL

P
ag

a
1ðxÞzG⊥a

1 ðz;M2
hÞP

af
a
1ðxÞDa

1ðz;M2
hÞ

: ð17Þ

Conclusions.—In this Letter, we have proposed two
new measurements which will permit us to access the
helicity-dependent DiFF, both in back-to-back two-hadron
pair production in eþe− annihilation and in forward two-
hadron production in SIDIS. In both cases, the proposed
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asymmetries measure a combination of the zeroth and
second cosine Fourier moments of the integrated G⊥

1 and
we demonstrated a prescription for accessing the higher
Fourier cosine moments of G⊥

1 by way of using different
azimuthal modulations. In SIDIS this is multiplied by the
nucleon helicity PDF. This presents a very promising
opportunity for testing the universality of this DiFF
between SIDIS and eþe− processes, since the helicity
PDF has been experimentally determined to a high pre-
cision. This is in contrast to the IFF, which is coupled with
the poorly known transversity PDF. Indeed the universality
of IFF has been used to extract transversity via a combined
analysis of SIDIS and eþe− measurements. The proposed
eþe− measurements can be accomplished by reanalyzing
the BELLE Collaboration data used in previous searches of
G⊥

1 as well as through new measurements in the upcoming
BELLE II experiment. The complimentary SIDIS mea-
surements could be done at Jefferson Lab 12 and the
proposed Electron-Ion Collider. Once measured, G⊥

1 can
serve as a polarimeter to determine quark longitudinal
polarization in a number of other process, such as hadron
pair production in polarized pp scattering.
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