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We gauge-fix the standard model effective field theory in a manner invariant under background-field
gauge transformations using a geometric description of the field connections.
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Introduction.—When physics beyond the standard
model (SM) is present at scales (Λ) larger than the
electroweak scale (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH†H

p
i≡ v̄T), the SM can be

extended into an effective field theory (EFT). The standard
model effective field theory (SMEFT), defined by a power-
counting expansion in the ratio of scales v̄T=Λ < 1, extends

the SM with higher-dimensional operators QðdÞ
i of mass

dimension d. The Lagrangian is

LSMEFT ¼ LSM þ Lð5Þ þ Lð6Þ þ Lð7Þ þ � � � ;

LðdÞ ¼
X
i

CðdÞ
i

Λd−4 Q
ðdÞ
i for d > 4: ð1Þ

The SMEFT is a model-independent and consistent low-
energy parametrization of heavy physics beyond the SM, so
long as its defining assumptions are satisfied: that there are
no light hidden states in the spectrum with couplings to
the SM, and a SUð2ÞL scalar doublet with hypercharge
yh ¼ 1=2 is present in the EFT.
The SMEFT has the same SUð3ÞC × SUð2ÞL ×Uð1ÞY

global symmetry as the SM. The SMEFT also has a phase
where SUð2ÞL ×Uð1ÞY → Uð1Þem due to the Higgs
mechanism. A difference between these theories is that
additional couplings and interactions between the fields

come about due to the QðdÞ
i . Some of these interactions are

bilinear in the SM fields in the phase broken by the Higgs
mechanism. These terms are important for gauge fixing,
and the presence of these interactions introduces technical
challenges to the usual gauge-fixing approach.
The bilinear field interactions in the SMEFT are usefully

thought of in terms of connections in the field space
manifolds of the theory [1,2]. The purpose of this Letter
is to show that gauge-fixing the SMEFT, taking into

account the field space metrics, directly resolves many
of the technical challenges that have been identified to date.
The approach we develop generalizes directly to higher
orders in the SMEFT power-counting expansion.
The difficulties in gauge-fixing the SMEFT are also

present when the background-field method (BFM) [3–9] is
used [10]. The BFM splits the fields in the theory into
quantum and classical fields (F → F þ F̂), with the latter
denoted with a hat superscript. One performs a gauge-
fixing procedure that preserves background-field gauge
invariance while breaking explicitly the quantum-field
gauge invariance. This allows a gauge choice for the
quantum fields to be made to one’s advantage, while still
benefiting from the simplifications that result from naive
Ward identities [11] due to the preserved background-field
gauge invariance. (The Ward identities result from consid-
ering BRST invariance [12] when the BFM is not used,
which can be more cumbersome when extending results to
higher orders in the SMEFT power-counting expansion.)
In this Letter, we show how to perform gauge fixing with

the BFM, taking into account the field space metrics that are
present due to the SMEFT power-counting expansion. The
usual Rξ gauge-fixing approach in the BFM for the standard
model [6–9] is a special case of this approach. (For an Rξ

gauge SMEFT formulation with three distinct ξ parameters,
see Ref. [13].) Conceptually, one can understand that this
procedure is advantageous, as it preserves the background
SUð3ÞC × SUð2ÞL ×Uð1ÞY invariance on the curved field
spaces present due to the power-counting expansion. The
latter is trivialized away in the standard model.
Scalar space.—The operators that lead to scalar kinetic

terms in the phase of the theory up to Lð6Þ broken by the
Higgs mechanism are [14]

Lscalar;kin ¼ ðDμHÞ†ðDμHÞ þ CH□

Λ2
ðH†HÞ□ðH†HÞ

þ CHD

Λ2
ðH†DμHÞ�ðH†DμHÞ;

≡ 1

2
hIJðϕÞðDμϕÞIðDμϕÞJ: ð2Þ
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Our covariant derivative sign convention is given byDμH ¼
ð∂μ þ ig2Wa;μσa=2þ ig1yhBμYÞH and ðDμϕÞI ¼ ð∂μδIJ−
1
2
WA;μγ̃IA;JÞϕJ, with definitions given below. Defining

H ¼ 1ffiffiffi
2

p
�
ϕ2 þ iϕ1

ϕ4 − iϕ3

�
; ð3Þ

the scalar field connections can be described by an R4 field
manifold with themetric hIJðϕÞ. Our notation is that the latin
capital letters I; J; K; L;… run over f1; 2; 3; 4g, while
lowercase latin letters i; j; k; l;… run over f1; 2g. Themetric
takes the form

hIJðϕÞ ¼ δIJ − 2
CH□

Λ2
ϕIϕJ þ

1

2

CHD

Λ2
fIJðϕÞ; ð4Þ

where

fIJðϕÞ ¼

2
6664
a 0 d c

0 a c −d
d c b 0

c −d 0 b

3
7775;

a ¼ ϕ2
1 þ ϕ2

2;

b ¼ ϕ2
3 þ ϕ2

4;

c ¼ ϕ1ϕ4 þ ϕ2ϕ3;

d ¼ ϕ1ϕ3 − ϕ2ϕ4:

ð5Þ

The Riemann curvature tensor calculated from the scalar
field metric is nonvanishing [1,2,15]. The scalar manifold
is curved due to the power-counting expansion. An
interesting consequence is that there does not exist a
gauge-independent field redefinition which sets hIJ ¼
δIJ when considering Lð6Þ corrections [15]. As a result,
demanding that the Higgs doublet field be canonically
normalized in the SMEFT to Lð6Þ cannot be used as a
defining condition for operator bases [15–18].
Gauge boson space.—The operators that lead to

CP-even bilinear interactions for the SUð2ÞL ×Uð1ÞY
spin-1 fields up to Lð6Þ are

LWB ¼ −
1

4
Wa

μνWa;μν −
1

4
BμνBμν þ CHB

Λ2
H†HBμνBμν

þ CHW

Λ2
H†HWa

μνWa;μν þ CHWB

Λ2
H†σaHWa

μνBμν;

≡ −
1

4
gABðHÞWA

μνWB;μν; ð6Þ

where a; b;… run over f1; 2; 3g, and A;B;C;… run over
f1; 2; 3; 4g. Here W4

μν ¼ Bμν. Analogous to the scalar
sector, we have introduced a metric gAB½HðϕiÞ�, taking
the form

gab ¼
�
1 − 4

CHW

Λ2
H†H

�
δab; g44 ¼ 1 − 4

CHB

Λ2
H†H;

ga4 ¼ g4a ¼ −2
CHWB

Λ2
H†σaH: ð7Þ

The Riemann curvature tensor for the gauge fields can be
calculated from gAB and is nonvanishing; the (CP-even) R4

spin-1 field manifold is also curved. [SUð2ÞL is self adjoint.
As a result, one can define a GAB tensor of the same form as
gAB through GABðHÞWμν

A WB;μν. This GAB is not the tensor
gAB defined through the relation gABgBC ¼ δAC andused in the
gauge-fixing term.] A physical consequence is that, as in the
case of the scalar manifold, there does not exist a gauge-
independent field redefinition that sets gAB ¼ δAB including
Lð6Þ corrections. (A rotation to the mass eigenstate basis for
the field bilinear interactions can be made, and this is
consistent with the curvature of the gauge manifold. Field-
redefiniton-invariant quantities are more directly connected
to S-matrix elements. For a similar discussion of how field-
redefintion-invariant beta functions can be defined in the
SMEFT, seeRef. [19].) The power-counting expansion of the
SMEFT is relevant for gauge fixing and cannot be removed
with gauge-independent field redefinitions, which is a novel
feature compared to more familiar EFTs without a phase
broken by the Higgs mechanism. The particular form of the
field space metrics depends on the operator basis used, but
the utility of thegeometric approach developedhere does not.
This argues for a modified gauge-fixing procedure using the
BFM in the SMEFT.
Gauge fixing.—Eliminating bilinear kinetic mixing

between the gauge bosons and the Goldstone bosons in
an efficient gauge-fixing procedure is advantageous. A
simpler LSZ procedure [20] to construct S-matrix elements
results from this condition being imposed. Rξ gauge [21] in
the SM when ξW ¼ ξB has some further advantages in
eliminating contact operators that complicate calculations
in intermediate steps. Using the BFM combined with Rξ

gauge fixing, the gauge-fixing term for the SUð2ÞL ×
Uð1ÞY fields in the SM takes the form [6–9]

LGF ¼ −
1

2ξW

X
a

½∂μWa;μ − g2ϵabcŴb;μW
μ
c

þ ig2
ξW
2
ðĤ†

i ðσaÞijHj −H†
i ðσaÞijĤjÞ�2

−
1

2ξB

�
∂μBμ þ ig1

ξB
2
ðĤ†

i H
i −H†

i Ĥ
iÞ
�
2

; ð8Þ

where the background fields are denoted by a hat.
The SUð2ÞL Pauli matrix representation in Eq. (8) is

inconvenient for characterizing the gauge-fixing term, as
gAB is defined on R4. The Pauli matrix algebra is iso-
morphic to the Clifford algebra Cð0; 3Þ, and the latter can
be embedded in the R4 field space using the real repre-
sentations γ1;2;3 such that
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γI1;J ¼

2
6664
0 0 0 −1
0 0 −1 0

0 1 0 0

1 0 0 0

3
7775; γI2;J ¼

2
6664

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

3
7775;

γI3;J ¼

2
6664
0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

3
7775; γI4;J ¼

2
6664
0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

3
7775: ð9Þ

The γ4 generator is used for the Uð1ÞY embedding. As
SUð2ÞL is self-adjoint, we can also define this algebra for
the adjoint fields, using the same real representations.
γ1;2;3;4hϕi ≠ 0, and the unbroken combination of gener-
ators ðγ3 þ γ4Þhϕi ¼ 0 corresponds to Uð1Þem. We absorb
the couplings into the structure constants and gamma
matrices,

ϵ̃ABC ¼ g2ϵABC; with ϵ̃123 ¼ þg2;

γ̃IA;J ¼
� g2γIA;J; for A ¼ 1; 2; 3

g1γIA;J; for A ¼ 4:
ð10Þ

The different couplings g1, g2 enter as the group defined
on the R4 field space is not simple. The γIa;J matrices
satisfy the algebra ½γ̃a; γ̃b� ¼ 2ϵ̃cabγ̃c and ½γ̃a; γ̃4� ¼ 0.
The structure constants vanish when any of A, B,
C ¼ 4. Note also that Ĥ†σAH −H†σAĤ ¼ −iϕγAϕ̂, with
σ4 ¼ Y ¼ I2×2. The gauge-fixing term in the background-
field gauge takes the form

LGF ¼ −
ĝAB
2ξ

GAGB;

GX ≡ ∂μWX;μ − ϵ̃XCDŴ
C
μWD;μ þ ξ

2
ĝXCϕIĥIK γ̃KC;Jϕ̂

J:

ð11Þ

The Rξ gauge-fixing term follows when replacing the
background fields with their vacuum expectation values.
The gauge-fixing term is bilinear in the quantum fields.
The field space metrics in Eq. (11) are denoted with a hat
superscript, indicating that they are defined to depend
only on the background fields. Contracting with the field
space metrics is a basis-independent feature of the gauge-
fixing term.
It is useful to note the following background-field gauge

transformations (δF̂), with infinitesimal local gauge param-
eters δα̂AðxÞwhen verifying explicitly the background-field
gauge invariance of this expression:

δϕ̂I ¼ −δα̂A
γ̃IA;J
2

ϕ̂J;

δðDμϕ̂ÞI ¼ −δα̂A
γ̃IA;J
2

ðDμϕ̂ÞJ;
δŴA;μ ¼ −∂μðδα̂AÞ − ϵ̃ABCδα̂

BŴC;μ;

δĥIJ ¼ ĥKJ
δα̂Aγ̃KA;I

2
þ ĥIK

δα̂Aγ̃KA;J
2

;

δŴA
μν ¼ −ϵ̃ABCδα̂BŴC

μν;

δĝAB ¼ ĝCBϵ̃CDAδα̂
D þ ĝACϵ̃CDBδα̂

D: ð12Þ

The background-field gauge invariance is established by
using these transformations in conjuction with a linear
change of variables on the quantum fields

WA;μ → WA;μ − ϵ̃ABCδα̂
BWC;μ;

ϕI → ϕI −
δα̂Bγ̃IB;K

2
ϕK: ð13Þ

The transformation of the gauge-fixing term is

δGX ¼ −ϵ̃XABδα̂
AGB: ð14Þ

With these transformations, the background-field gauge
invariance of the gauge-fixing term is directly established.
The background-field-generating functional (Z) depends

on the background fields F̂≡ fŴA; ϕ̂Ig and the sources
JF ≡ fJA; JIϕg. The source terms transform as

δJAμ ¼ −ϵ̃ABCδα̂BJCμ ; δJIϕ ¼ −
δα̂Bγ̃IB;K

2
JKϕ : ð15Þ

The background-field-generating functional dependence on
the source terms is invariant under the background-field
gauge transformations, as they are contracted with the field
space metrics in Z½F̂; JF� defined by

Z
DF det

�
ΔGA

ΔαB

�
eiðS½FþF̂�þLGFþĝCDJCμWD;μþĥIJJIϕϕ

JÞ:

The integration over dx4 is implicit in this expression. Here
a quantum-field gauge transformation is indicated with aΔ.
The action is manifestly invariant under the gauge trans-
formation of F þ F̂. This establishes the background field
invariance of the generating functional.
The quantum-field gauge transformations are

ΔWA
μ ¼ −∂μΔαA − ϵ̃ABCΔαBðWC

μ þ ŴC
μ Þ;

ΔϕI ¼ −ΔαA
γ̃IA;J
2

ðϕJ þ ϕ̂JÞ: ð16Þ

As the field metrics in Eq. (11) depend only on the back-
ground fields and do not transform under quantum-field
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gauge transformations, the Faddeev-Popov [22] ghost term
still follows directly; we find

LFP ¼ −ĝABūB½−∂2δAC − ∂⃖μϵ̃
A
DCðWD;μ þ ŴD;μÞ

þ ϵ̃ADCŴ
D
μ ∂⃗μ − ϵ̃ADEϵ̃

E
FCŴ

D
μ ðWF;μ þ ŴF;μÞ

−
ξ

4
ĝADðϕJ þ ϕ̂JÞγ̃IC;JĥIK γ̃KD;Lϕ̂

LÞ�uC: ð17Þ

The form of this expression follows from the convention
choice in Eq. (6), and the descendent convention in Eq. (11).
The mass eigenstate Zμ, Aμ fields are defined by

�
W3

μ

Bμ

�
¼

"
1þ CHWv̄2T

Λ2 − CHWBv̄2T
2Λ2

− CHWBv̄2T
2Λ2 1þ CHBv̄2T

Λ2

#�
cθ̄ sθ̄
−sθ̄ cθ̄

��
Zμ

Aμ

�
;

where the introduced rotation angles sθ̄; cθ̄ are [23,24]

tθ̄ ≡ sθ̄
cθ̄

¼ ḡ1
ḡ2

þ v̄2T
2

CHWB

Λ2

�
1 −

ḡ21
ḡ22

�
; ð18Þ

and ḡ2 ¼ g2ð1þ CHWv̄2T=Λ2Þ, ḡ1 ¼ g1ð1þ CHBv̄2T=Λ2Þ.
This removes mixing terms as well as making the kinetic
termof the spin-1 electroweak fields canonically normalized.
This results in a simplified LSZ procedure to construct
S-matrix elements. Ghost fields associated with the mass
eigenstates follow from the linear rotation to the mass
eigenstate fields. Feynman rules can be extracted directly
from these expressions. Corrections from the higher-dimen-
sional operators (CH□,CHD,CHWB,CHB,CHW) enter in ghost
interactions and couple to the sources through the gauge and
scalar metrics.
Conclusions.—In this Letter we have defined an

approach to gauge-fixing the SMEFT that preserves back-
ground-field gauge invariance. This approach directly
generalizes to higher orders in the SMEFT power counting.
The key point is to gauge-fix the fields on the curved field
space due to the power-counting expansion.
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