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The function space of deep-learning machines is investigated by studying growth in the entropy of
functions of a given error with respect to a reference function, realized by a deep-learning machine. Using
physics-inspired methods we study both sparsely and densely connected architectures to discover a
layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when
approaching the reference function, gain insight into the importance of having a large number of layers, and
observe phase transitions as the error increases.
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Deep-learning machines (DLMs) have both fascinated
and bewildered the scientific community and have given
rise to an active and ongoing debate [1]. They are carefully
structured layered networks of nonlinear elements, trained
on data to perform complex tasks such as speech recog-
nition, image classification, and natural language process-
ing. While their phenomenal engineering successes [2]
have been broadly recognized, their scientific foundations
remain poorly understood, particularly their good ability to
generalize well from a limited number of examples with
respect to the degrees of freedom [3–5] and the nature of the
layerwise internal representations [6,7].
Supervised learning in DLMs is based on the introduction

of example pairs of input and output patterns, which serve as
constraints on space of candidate functions. As more
examples are introduced, the function space monotonically
decreases. Statistical physics methods have been successful
in gaining insight into both pattern-storage [8] and learning
scenarios, mostly in single-layer machines [9] but also in
simple two-layer scenarios [10,11]. However, extending
these methods to DLMs is difficult due to the recursive
application of nonlinear functions in successive layers and
the undetermined degrees of freedom in intermediate layers.
While training examples determine both input and output
patterns, the constraints imposed on hidden-layer represen-
tations are difficult to pin down. These constitute the main
difficulties for a better understanding of DLMs.
In this Letter, we propose a general framework for

analyzing DLMs by mapping them onto a dynamical
system and by employing the generating functional (GF)
approach to analyze their typical behavior. More specifi-
cally, we investigate the landscape in function space around
a reference function by perturbing its parameters (weights
in the DLM setting) and quantifying the entropy of the
corresponding functions space for a given level of error
with respect to the reference function. This provides a
measure for the abundance of nearly perfect solutions and

hence an indication for the ability to obtain good approxi-
mations using DLMs. The function error measure is
defined as the expected difference (Hamming distance in
the discrete case) between the perturbed and reference
functions’ outputs given the same input (additional explan-
ation is provided in Ref. [12]). This setup is reminiscent of
the teacher-student scenario, commonly used in the neural
networks literature [18] where the average error serves as a
measure of distance between the perturbed and reference
network in function space. For certain classes of reference
networks, we obtain closed form solutions of the error as a
function of perturbation on each layer, and consequently
the weight-space volume for a given level of function error.
By virtue of supervised learning and constraints imposed
by the examples provided, high-error functions will be
ruled out faster than those with low errors, such that the
candidate function space is reduced and the concentration
of low-error functions increases. A somewhat similar
approach, albeit based on recursive mean field relations
between each two consecutive layers separately, has been
used to probe the expressivity of DLMs [19].
Through the GF framework and entropy maximization,

we analyze the typical behavior of different classes of
models including networks with continuous and binary
parameters (weights) and different topologies, both fully
and sparsely connected. We find that as one lowers the error
level, typical functions gradually better match the reference
network starting from earlier layers to later ones. More
drastically, for fully connected binary networks, weights in
earlier layers of the perturbed functions will perfectly
match those of the reference function, implying a possible
successive layer by layer learning behavior. Sparsely
connected topologies exhibit phase transitions with respect
to the number of layers, by varying the magnitude of
perturbation, similar to the phase transitions in noisy
Boolean computation [20], which support the need of deep
networks for improving generalization.
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Densely connected network models.—The model
considered here comprises two coupled feed-forward
DLMs as illustrated in Fig. 1, one of which serves as
the reference function and the other is obtained by
perturbing the reference network parameters. We first
consider the densely connected networks. Each network
is composed of Lþ 1 layers of N neurons each. The
reference function is parametrized by N2 × L weight
variables ŵl

ij; ∀ l ¼ 1; 2;…; L; i; j ¼ 1; 2;…; N, and
maps an N-dimensional input ŝ0 ∈ f−1; 1gN to an
N-dimensional output ŝL ∈ f−1; 1gN , through intermedi-
ate-layer internal representations and according to the
stochastic rule:

PðŝLjŵ; ŝ0Þ ¼
YL
l¼1

Pðŝljŵl; ŝl−1Þ: ð1Þ

The ith neuron in the lth layer experiences a local field
ĥliðŵl; ŝl−1Þ ¼ ð1= ffiffiffiffi

N
p ÞPjŵ

l
ijŝ

l−1
j , and its state is deter-

mined by the conditional probability

Pðŝlijŵl; ŝl−1Þ ¼ eβŝ
l
iĥ

l
iðŵl;ŝl−1Þ

2 cosh½βĥliðŵl; ŝl−1Þ� ; ð2Þ

where the temperature β quantifies the strength of thermal
noise. In the noiseless limit β → ∞, node i represents a
perceptron ŝli ¼ sgnðĥliÞ and Eq. (1) corresponds to a
deterministic neural network with a sign activation func-
tion. The perturbed network operates in the same manner,
but the weights wl

ij are obtained by applying independent
perturbation to each of the reference weights; the perturbed
weights wl

ij give rise to a function that is correlated with the
reference function.
We focus on the similarity between reference and

perturbed functions outputs for randomly sampled input
patterns s0 ¼ ŝ0, drawn from some distribution Pðŝ0Þ.
Considering the joint probability of the two systems,

P½fŝlg;fslg�¼Pðŝ0Þ
YN
i¼1

δs0i ;ŝ0i

YL
l¼1

Pðŝljŵl; ŝl−1ÞPðsljwl;sl−1Þ;

ð3Þ

where the weight parameters fŵl
ijg and fwl

ijg are
quenched disordered variables. We consider two cases,
where the weights are continuous or discrete variables
drawn from the Gaussian and Bernoulli distributions,
respectively. The quantities of interest are the overlaps
between the two functions at the different layers
qlðŵ;wÞ≡ ð1=NÞPihŝlislii, where angle brackets h� � �i
denote the average over the joint probability
P½fŝlg; fslg�. The N outputs represent N weakly coupled
Boolean functions of the same form of disorder, and thus
share the same average behavior.
The form of probability distribution Eq. (3) is

analogous to the dynamical evolution of disordered
Ising spin systems [21] if the layers are viewed as discrete
time steps of parallel dynamics. We therefore apply the GF
formulation from statistical physics to these deep feed-
forward functions similarly to the approach used to
investigate random Boolean formulas [20]. We compute

the GF Γ½ψ̂;ψ� ¼ he−i
P

l;i
ðψ̂ l

iŝ
l
iþψ l

is
l
iÞi, from which the

moments can be calculated; e.g., qlðŵ;wÞ ¼
−ð1=NÞPi limψ̂;ψ→0ð∂2=∂ψ̂ l

i∂ψ l
iÞΓ½ψ̂;ψ�. Assuming the

systems are self-averaging for N → ∞ and computing
the disorder average (denoted by the upper line) Γ½ψ̂;ψ�,
the disorder-averaged overlaps can be obtained, ql ¼
ð1=NÞPi¼1 hŝlislii. For convenience, we introduce the
field doublet Hl ≡ ½ĥl; hl�T . Expressing the GF Γ½ψ̂;ψ�
by macroscopic order parameters and averaging over
the disorder yields the saddle-point integral Γ ¼RfdqdQgeNΨ½q;Q�, where Ψ½� � �� is [12]

Ψ¼ i
XL
l¼0

Qlqlþ log
Z YL

l¼1

dĥldhl
X
fŝl;slg

M½ŝ;s; ĥ;h�; ð4Þ

and the effective single site measure M½� � �� has the
following form for both continuous and binary weights:

M½ŝ; s; ĥ; h�
¼ Pðŝ0Þδŝ0;s0e−i

P
L
l¼0

Ql ŝlsl

×
YL
l¼1

�
eβŝ

lĥl

2 coshβĥl
eβs

lhl

2 coshβhl
eð−1=2ÞðH

lÞTΣ−1
l Hl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2jΣlðql−1Þj

p
�
: ð5Þ

The Gaussian density of the local field fĥl; hlg in Eq. (5)
comes from summing a large number of random variables
in ĥl and hl. The precision matrix Σ−1

l , linking the effective
field ĥl and hl, measures the correlation between internal
fields of the two systems and depends on the overlap ql−1 of
the previous layer. In the limit N → ∞, the GF Γ is
dominated by the extremum of Ψ. Variation with respect
to Ql gives rise to saddle-point equations of the order
parameters ql ¼ hŝlsliM½����, where the average is taken over
the measure M½� � �� of Eq. (5). The conjugate order

FIG. 1. The model of two coupled DLMs. The reference and
perturbed functions are denoted by fŵlg (black edges) and fwlg
(blue edges), respectively.
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parameter Ql, ensuring the normalization of the measure,
vanishes identically. It leads to the evolution equation [12]

ql ¼
Z

dĥldhl tanhðβĥlÞ tanhðβhlÞ e
ð−1=2ÞðHlÞTΣ−1

l Hl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2jΣlj

p : ð6Þ

The overlap evolution is somewhat similar to the
dynamical mean field relation in Ref. [19], but the objects
investigated and the remainder of the study are different.
We focus on the function-space landscape rather than the
sensitivity of function to input perturbations.
Densely connected continuous weights.—In the

first scenario, we assume weight variables ŵl
ij to be

independently drawn from a Gaussian density
N ð0; σ2Þ and the perturbed weights to have the form
wl
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðηlÞ2

p
ŵl
ij þ ηlδwl

ij, where δwl
ij are drawn

from N ð0; σ2Þ independently of ŵl
ij. It ensures that wl

ij
has the same variance σ2. The parameter ηl quantifies the
strength of perturbation introduced in layer l. In this case
the covariance matrix between the local fields ĥl and hl

takes the form

Σlðηl;ql−1Þ¼σ2
�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðηlÞ2

p
ql−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðηlÞ2
p

ql−1 1

�
; ð7Þ

leading to the closed form solution of the overlap as
β → ∞,

ql ¼ 2

π
sin−1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðηlÞ2

q
ql−1�: ð8Þ

Of particular interest is the final-layer overlap given the
same input for the two systems under specific perturbations
qLðfηlg; q0 ¼ 1Þ. The average error ε ¼ 1

2
ð1 − qLÞ mea-

sures the typical distance between the two mappings.
The number of solutions at a given distance (error) ε

away from the reference function is indicative of how
difficult it is to obtain this level of approximation at the
vicinity of the exact function. Let the N-dimensional
vectors ŵl;i and wl;i denote the weights of the ith perceptron
of the reference and perturbed systems at layer l, respec-
tively; the expected angle between them is θl ¼ sin−1ηl.
Then the perceptron wl;i occupies on average an angular
volume around ŵl;i as ΩðηlÞ ∼ sinN−2θl ¼ ðηlÞN−2 [22,23].
The total weight-space volume of the perturbed system is
ΩtotðfηlgÞ ¼

Q
L
l¼1

Q
iðηlÞN−2, and the corresponding

entropy density is

SconðfηlgÞ ¼
1

LN2
logΩtotðfηlgÞ ≈

1

L

XL
l¼1

log ηl: ð9Þ

In the thermodynamic limit N → ∞, the set of perturbed
functions at distance ε away from the reference function is
dominated by those with perturbation vector fη�lg, which
maximizes the entropy SconðfηlgÞ subject to the constraint
qLðfηlgÞ ¼ 1–2ε. The result of fη�lg for a four-layer

network, shown in Fig. 2(a), reveals that the dominant
perturbation η�l to the reference network decays faster for
smaller l values; this indicates that closer to the reference
function, solutions are dominated by functions where early-
layer weights match better the reference network.
Consequently, high-ε functions are ruled out faster during
training through the successful alignment of earlier layers,
resulting in the increasing concentration of low-ε functions
and better generalization. We denote the maximal weight-
space volume at distance ε away from the reference
function as Ω0ðεÞ≡Ωtotðfη�lgÞ.
Supervised learning is based on the introduction of

input-output example pairs. Introducing constraints, in
the form of P≡ αLN2 examples provided by the reference
function, the weight-space volume at small distance ε away
from the reference function is reshaped as ΩαðεÞ ¼
Ω0ðεÞð1 − εÞP in the annealed approximation [22,23];

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Maximal-entropy perturbations as a function of output
error ε for a four-layer densely connected network with (a) con-
tinuous weights and (b) binary weights. Inset represents the
growth in entropy with respect to ε. (c) Generalization curves of
densely connected networks with continuous weights by using
the annealed approximation. The inset demonstrates the classical
asymptotic behavior of ε� ∼ α−1 in the large α limit [23].
(d) Stationary magnetization m and function error ε for sparsely
connected MAJ-3-based DLMs as a function of perturbation
probability p in networks with binary weights. We show the
evolution of (e) magnetization and (f) internal activation error δ
over layers. Note that p ¼ 0 corresponds to the reference net-
work. All results are obtained in the deterministic limit β → ∞.
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details of the derivation can be found in Ref. [12]. The
typical distance ε�ðαÞ ¼ argmaxεΩαðεÞ can be interpreted
as the generalization error in the presence of P examples,
giving rise to an approximate generalization curve shown in
Fig. 2(c). These are expected to be valid in the small ε (large
α) limit on which the perturbation analysis is based. It is
observed that typically a large number of examples
(α ≫ 10) are needed for good generalization. This may
imply that DLMs trained on realistic data sets (usually
α ≪ 1) occupy a small, highly biased subspace, different
from the typical function space analyzed here (e.g., the
handwritten digit MNIST database [24] represents highly
biased inputs that occupy a very small fraction of the input
space). Note that the results correspond to a typical
generalization performance under the assumption of self-
averaging, potentially with unlimited computational resour-
ces and independently of the training rule used.
Densely connected binary weights.—Once trained, net-

works with binary weights are highly efficient computa-
tionally, which is especially useful in devices with limited
memory or computational resources [25,26]. Here we
consider a reference network with binary weight variables
drawn from the distribution Pðŵl

ijÞ ¼ 1
2
δŵl

ij;1
þ 1

2
δŵl

ij;−1
,

while the perturbed network weights follow the distribution
Pðwl

ijÞ ¼ ð1 − plÞδwl
ij;ŵ

l
ij
þ plδwl

ij;−ŵ
l
ij
, where pl is the flip-

ping probability at layer l. The covariance matrix,

Σlðpl; ql−1Þ ¼
�

1 ð1 − 2plÞql−1
ð1 − 2plÞql−1 1

�
; ð10Þ

gives rise to overlaps ql as β → ∞ of the form

ql ¼ 2

π
sin−1½ð1 − 2plÞql−1�: ð11Þ

The entropy density of the perturbed system is given by

SbinðfplgÞ¼ 1

L

XL
l¼1

−pl logpl−ð1−plÞ logð1−plÞ: ð12Þ

Similarly, the entropy SbinðfplgÞ is maximized by the
perturbation vector fp�lg subject to qLðfplgÞ ¼ 1–2ε at
a distance ε away from the reference function. The result of
fp�lg for a four-layer binary neural network is shown in
Fig. 2(b). Surprisingly, as ε decreases, the first-layer
weights are first to align perfectly with those of the
reference function followed by the second-layer weights
and so on. The discontinuities come from the nonconvex
nature of the entropy landscape SbinðfplgÞ when one
restricts the perturbed system to the nonlinear ε-error
surface satisfying qLðfplgÞ ¼ 1–2ε. Nevertheless, there
exist many more high-ε than low-ε functions for densely
connected binary networks [as indicated by the entropy
shown in the inset of Fig. 2(b)], and it remains to explore
how low generalization error functions could be identified.
Sparsely connected binary weights.—Lastly, we consider

the sparsely connected DLM with binary weights; these

topologies are of interest to practitioners due to the
reduction in degrees of freedom and their computational
and energy efficiency. The layered setup is similar to
the previous case, except that unit i at layer l is randomly
connected to a small number k of units in layer (l − 1)
and its local field is given by ĥliðŵl; ŝl−1Þ ¼
ð1= ffiffiffi

k
p ÞPjA

l
ijŵ

l
ijŝ

l−1
j , where the adjacency matrix Al rep-

resents the connectivity between the two layers. The
perturbed network has the same topology but its
weights are randomly flipped, Pðwl

ijÞ ¼ ð1 − plÞδwl
ij;ŵ

l
ij
þ

plδwl
ij;−ŵ

l
ij
; the activation and the joint probability of the two

systems follow from Eqs. (2) and (3). Unlike the case of
densely connected networks, the magnetization ml ≡
ð1=NÞPis

l
i also plays an important role in the evolution

of sparse networks. The GF approach gives rise to the
order parameter Plðŝ; sÞ≡ ð1=NÞPiδŝli;ŝδsli;s relating

to the magnetization and overlap by Plðŝ; sÞ ¼
1
4
ð1þ ŝm̂l þ sml þ ŝsqlÞ.
The random topology provides an additional disorder to

average over. For simplicity, we assign the reference
weights to ŵl

ij ¼ 1, which in the limit β → ∞ relate to
the k-majority gate (MAJ-k)-based Boolean formulas that
provide all Boolean functions with uniform probability at
the large L limit [27,28]. For a uniform perturbation over
layers pl ¼ p, we focus on functions generated in the deep
regime L → ∞, where the order parameters take the form

ml ¼
X
fsjg

Yk
j¼1

1

2
½1þ sjml−1ð1 − 2pÞ�sgn

�Xk
j¼1

sj

�
; ð13Þ

ql ¼
X
fsj;ŝjg

Yk
j¼1

1

4
½1þ ŝjm̂l−1 þ sjml−1ð1 − 2pÞ

þsjŝjql−1ð1 − 2pÞ�sgn
�Xk
j¼1

ŝj

�
sgn

�Xk
j¼1

sj

�
: ð14Þ

For finite k, the macroscopic observables at layer l are
polynomially dependent on the observables at layer (l − 1)
up to order k. In the limit L → ∞, the Boolean functions
generated depend on the initial magnetization
m0 ¼ ð1=NÞPis

0
i . Here, we consider a biased case with

initial conditions m̂0 ¼ m0 > 0 and q0 ¼ 1. The reference
function admits a stationary solution m̂∞ ¼ 1, computing a
1-bit information-preserving majority function [28]. Both
magnetization of the perturbed function m∞ and the
function error ε ¼ 1

2
ð1 − q∞Þ exhibit a transition from

the ordered phase to the paramagnetic phase at some
critical perturbation level pc, below which the perturbed
network computes the reference function with error ε < 1

2
.

The results for k ¼ 3 are shown in Fig. 2(d). Interestingly,
the critical perturbation pc coincides with the location of
the critical thermal noise ϵc ¼ 1

2
ð1 − tanh βcÞ for noisy

k-majority gate-based Boolean formulas; for k ¼ 3, the
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critical perturbation pc ¼ 1
6
[20]. Below pc, there exist

two ordered states with m∞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 6pÞ=ð1 − 2pÞ3

p
,

and the overlap satisfies q∞ ¼ m∞ [12], which is also
reminiscent of the thermal noise-induced solutions [20].
However, the underlying physical implications are drasti-
cally different. Here it indicates that even in the deep
network regime there exists a large number ð Nk

NkpÞL of
networks that can reliably represent the reference function
when p < pc. This function landscape is important
for learning tasks to achieve a similar rule to the
reference function. The propagation of internal error
δðlÞ≡ 1

2
ð1 − qlÞ, shown in Fig. 2(f), exhibits a stage of

error increase followed by a stage of error decrease for
p < pc. Consequently, a successful sparse DLM
requires more layers to reduce errors and provide a
higher similarity to the reference function when we
approach pc, indicating the need of deep networks in such
models.
In summary, we propose a GF analysis to probe the

function landscapes of DLMs, focusing on the entropy of
functions, given their error with respect to a reference
function. The entropy maximization of densely connected
networks at fixed error to the reference function indicates
that weights of earlier layers are the first to align with
reference function parameters when the error decreases. It
highlights the importance of early-layer weights for
reliable computation [29] and sheds light on the param-
eter learning dynamics in function space during the
learning process. We also investigate the phase transitions
behavior in sparsely connected networks, which advocate
the use of deeper machines for suppressing errors with
respect to the reference function in these models. The
suggested GF framework is very general and can accom-
modate other structures and computing elements, e.g.,
continuous variables, other activation functions (such as
the commonly used ReLU activation function [12]), and
more complicated weight ensembles. In Ref. [12], we
also demonstrate the effect of negatively or positively
correlated weight variables on the expressive power of
networks with ReLU activation and their impact on the
function space, and investigate the behavior of simple
convolutional DLMs. Moreover, the GF framework
allows one to investigate other aspects as well, including
finite size effects and the use of perturbative expansion to
provide a systematic analysis of the interactions between
network elements. This is a step towards a principled
investigation of the typical behavior of DLMs and we
envisage follow-up work on various aspects of the
learning process.
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