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Cluster morphology of spherical particles interacting with a short-range attraction has been extensively
studied due to its relevance to many applications, such as the large-scale structure in amorphous materials,
phase separation, protein aggregation, and organelle formation in cells. Although it was widely accepted
that the range of the attraction solely controls the fractal dimension of clusters, recent experimental results
challenged this concept by also showing the importance of the strength of attraction. Using Monte Carlo
simulations, we conclusively demonstrate that it is possible to reduce the dependence of the cluster
morphology to a single variable, namely, the reduced second virial coefficient, B�

2, linking the local
properties of colloidal systems to the extended law of corresponding states. Furthermore, the cluster size
distribution exhibits two well-defined regimes: one identified for small clusters, whose fractal dimension,
df , does not depend on the details of the attraction, i.e., small clusters have the same df , and another related
to large clusters, whose morphology depends exclusively on B�

2, i.e., df of large aggregates follows a
master curve, which is only a function of B�

2. This physical scenario is confirmed with the reanalysis of
experimental results on colloidal-polymer mixtures.
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Colloidal dispersions are ubiquitous in nature and exhibit
rich equilibrium phases, such as liquid and crystal states
[1,2], and nonequilibrium states, for example, gels and
glasses [2,3]. They are also critical to several industrial
applications (paints, pharmaceutical drugs, etc.) [4–6].
Nowadays, the understanding of colloidal cluster formation
has attracted much interest due to its relevance to many
applications, such as colloidal stability, pharmaceutical
protein formulations, and protein aggregations in some
diseases [7,8]. Interestingly, cluster formation is associated
with problems during the subcutaneous injection
of some cancer treatment drugs [7] and the uncontrolled
formation of protein aggregates is responsible for the
development of some diseases [9,10]. Clustering is also
important for the formation of organelles and other kind of
intracellular bodies, which occurs as a result of the protein
phase separation at the interior of the cell [11–14].
Cluster formation has been studied in several colloidal

systems with different types of interaction potentials, see
Refs. [15,16] and references therein. Experiments show
that colloidal clusters can be characterized as fractal
structures [3,17–19]; i.e., the size of a cluster composed
of s particles grows as Rg ∼ s1=df , where df is the fractal
dimension. Spherical colloids with a short-range attraction
hard-sphere (SAHS) interaction become the most widely

studied model system. Experiments using colloid-polymer
mixtures showed that the range of attraction among
colloids determines df of clusters in the vicinity of the
gel transition [17]. Long ranges (15% of the particle
diameter, σ) lead to compact clusters (df ∼ 2.5), while
short ranges (2% of σ) produce open and branched
structures (df ∼ 1.75). Since then, it has been well accepted
that the attraction range plays a determinant role for the
cluster morphology [15,20–22]. However, Ohtsuka et al.
[19] found that the attraction strength modifies df and it
takes an almost constant value at the gel state, df ∼ 2.1.
Thus, despite the scientific and technological importance of
the cluster morphology, there is no clear understanding and
consensus of the control parameters that determine df in
SAHS systems.
In this Letter, we have performed Monte Carlo (MC)

simulations to study the reversible cluster formation and
morphology in SAHS systems, and carefully reexamined
independent experiments. Combining both simulation and
experimental results, we conclusively demonstrate that,
contrary to the current widely accepted view [17], the
dependence of the cluster morphology in SAHS systems is
solely dependent on the reduced second virial coefficient,
B�
2. Furthermore, our simulations indicate that the cluster
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size distribution is well separated into two regimes: one
for small clusters, whose morphology, i.e., df, is almost
independent of B�

2, and another related to large clusters,
where df depends exclusively and sensitively on B�

2. After
reanalyzing the experimental results, we confirm this
scenario. Thus, our findings indicate that the colloidal
cluster morphology at equilibrium conditions can be linked
to the extended law of corresponding states (ELCS) [23]
for SAHS systems (attraction range less than the 25%
of σ). Our result is thus an important extension of the
applicability of the ELCS; i.e., not only are the macroscopic
properties determined by the ELCS, but also the local
morphology.
MC simulations are carried out in the canonical ensemble

using a similar protocol as the one presented in Ref. [24],
which is complemented with the parallel tempering tech-
nique to make a smart exploration of the phase space. The
colloidal system consists of N ¼ 4000 spherical particles
interacting through a square-well (SW) potential [24],

uSWðrÞ ¼
8
<

:

∞ r < σ;

−ϵ σ ≤ r ≤ λσ;

0 r > λσ;

ð1Þ

where λ and ϵ are the range and strength of the well,
respectively. We focus on short-ranged attractions, namely,
λ ¼ 1.02, 1.05, 1.10, 1.15, which represent the effective
interaction of colloids and proteins [24]. The particle number
density, ρ ¼ N=V, is linked to the packing fraction ϕ ¼
ðπ=6Þρσ3. The reduced second virial coefficient, B�

2ðTÞ, of
the SW potential is given by B�

2ðTÞ ¼ ½1þ ð1 − eϵ=kBTÞ
ðλ3 − 1Þ� [24], where kB is the Boltzmann’s constant and T
the absolute temperature. Two particles are connected if
their relative separation is smaller than λσ. All connected
particles are identified and sorted into clusters of size s
characterized by a radius of gyration, RgðsÞ ¼ ½ð1=sÞ
P

s
i¼1 ðri − rCMÞ2�1=2, where ri is the position of every

particle in a cluster and rCM is the cluster center of mass.
The cluster fractal dimension is obtained by fitting the Rg to
the expression: Rg ∝ s1=df . Note that even though Rg of a
real object should also include the contribution of the mass
distribution of individual particles, the current way of
calculating it assumes that all the mass is at the center of
a particle to compare our results with available experimental
and theoretical data [17,19,25]. However, a detailed dis-
cussion on the effect of the mass distribution in the
determination of Rg can be explicitly found in the
Supplemental Material [26].
The phase diagram of SAHS systems (λ ≤ 1.25) has

been reported by several authors, see, e.g., Ref. [24]. The
phase diagram of the SW fluid for λ ¼ 1.1 is displayed in
Fig. 1(a). Three thermodynamic regions can be distin-
guished: the fluid state, the fluid-crystal coexistence,
and the (metastable) gas-liquid coexistence [24], whose

boundary is known as the binodal line. The cluster
morphology is studied along a isochoric line crossing
the phase boundaries, as indicated in Fig. 1(a). We have
also included a state point slightly below the binodal just to
capture the trend of the cluster formation when crossing
the phase boundary although thermodynamic equilibrium
cannot be reached within the simulation time window.
The density is chosen below the percolation line to avoid
clusters spanning through the entire simulation box.
Rg as a function of the cluster size, s, is displayed in

Figs. 1(b) and 1(c). Note that if the morphology follows
one fractal structure, Rg vs s should be described by one
single straight line in a log-log plot. However, the results in
Figs. 1(b) and 1(c) clearly indicate that small clusters and
large clusters have different slopes. Therefore, even though
it has been a common method to analyze the experimental
data with only one fractal dimension for clusters with all
sizes, our results indicate that to better understand the
changes in the cluster morphology, it is appropriate to
separate small clusters from large clusters as it is likely that
they may have different dependence on the interparticle
potential parameters. To empirically set up a boundary, we
have used two straight lines (two different types of fractal
morphologies) to fit the curve Rg vs s in the log-log
representation. Interestingly, we find that the fits suggest

FIG. 1. (a) Phase diagram, B�
2 vs ϕ, for colloids interacting

through a SW potential with λ ¼ 1.1. Solid line represents the
fluid-crystal coexistence boundary obtained from Eq. (4) of
Ref. [27], diamonds describe the binodal curve calculated with
MC simulations [24] and the star is the critical point, inverted
triangles indicate the percolation boundary [28]; the line is a
guide for the eye. Vertical dotted line indicates the packing
fraction (isochoric line) at which the cluster morphology is
studied; the open triangle indicates a thermodynamic state below
the binodal. Radius of gyration, Rg, for clusters made of s
particles for SW systems at ϕ ¼ 0.08 with (b) λ ¼ 1.1 at different
B�
2 values [symbols in (a)] and (c) with variable λ and B�

2 ¼ −1.5.
Discontinuous lines fit the data to the expression Rg ¼ As1=df ;
the fits are performed in the intervals s < 10 and 10 ≤ s ≤ 100.
Vertical arrows indicate the crossover point, located at s ¼ 10, of
both fits, which naturally establishes the separation between
small and large clusters.
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that there is a crossover point for Rg at s ∼ 10 [see the
intersection of the fits indicated by the vertical arrows in
Figs. 1(b) and 1(c)], which allows us to make a distinction
between “small” and “large” clusters from now on. Hence,
we refer to small clusters as those clusters composed of
s ≤ 10 and large clusters with 10 < s ≤ 100. Note that
assigning a fractal dimension to small clusters (s ≤ 10) may
not be very meaningful. However, for the sake of con-
sistency and easier comparison with earlier contributions,
we still extract a nominal fractal dimension using the slope
of Rg for small aggregates.
Figure 1(b) shows the Rg in colloidal systems at different

values of B�
2 for λ ¼ 1.1. The value of B�

2 ranges from 0.075
(close to the Boyle point; B�

2 ¼ 0) to −1.723, which is
inside the binodal. Note that df of small clusters is not
sensitive to B�

2; i.e., small aggregates exhibit the same
fractal dimension, df ∼ 1.65; however, large clusters
depend on B�

2. Particularly, close to the Boyle point, where
entropic and energetic effects might contribute equally to
the cluster morphology, df ∼ 1.90. While around the fluid-
crystal coexistence and the gas-liquid phase separation, df
takes the values df ∼ 2.00 and df ∼ 2.23, respectively. The
latter values of df are calculated based on our criteria for
distinguishing between small and large clusters.
To understand the effect of the attraction range, Fig. 1(c)

shows the behavior of Rg as a function of λ with a constant
value of B�

2 ¼ −1.5 (near the gas-liquid transition). Our
results again indicate that Rg for small clusters does not
change much with λ. Interestingly, different from the case
of changing B�

2, altering the range of attraction only slightly
changes df of large clusters, which indicates that the cluster
morphology does not change dramatically with λ if B�

2 is
constant. df takes values between 2.2 and 2.3 for B�

2 ¼
−1.5 when λ changes from 1.02 to 1.15. The tests for other
cases (different volume fractions and attraction ranges) all
point out that the morphology of large clusters for the size
range, 10 ≤ s ≤ 100, is almost the same, provided they
have the same value of B�

2.
Our observations seem to contradict the conclusions of

earlier experimental results [17]. We revisit some exper-
imental results on the cluster morphology in colloid-
polymer mixtures in which the attraction range is given
by ξ, i.e., the size ratio between the colloids and the
polymer chains, while the attraction strength is controlled
by the polymer concentration, cp. Figure 2(a) shows the
experimental phase diagram for different experimental
colloid-polymer systems [2,17,19,29–33], where the attrac-
tion range is similar to the one discussed here.
Comparing the MC results to experiments is not straight-

forward because B�
2 for the latter cannot be easily mea-

sured. At low polymer concentrations, cp=c�p ≲ 0.10, all
colloidal systems are in the fluid state. When cp=c�p ≳ 0.15,
the system starts reaching one of the following states: fluid-
crystal coexistence, gas-liquid separation, and gelation; this

is a common behavior for different systems with short-
ranged attractions, even at higher colloidal concentrations
[36], and coincides with that reported with simulations
[Fig. 1(a)]. The gas-liquid coexistence [34] and the gelation
line [35] for colloids interacting through an Asakura-
Oosawa [37] potential with ξ ¼ 0.1 are also displayed.
Based on Fig. 2(a) and the fact that the overlap concen-
tration, c�p ∼ 1=R3, depends on the polymer length R, it is
reasonable to believe that cp=c�p includes both effects,
namely, the strength ðcpÞ and range (R) of the attraction
between colloids, thus playing an analogous role as B�

2.
One could assume that, in the same spirit as in the ELCS,
two short-ranged attractive systems with equal cp=c�p and ϕ
possess similar thermodynamic properties and are, there-
fore, somehow equivalent. Thus, we take advantage of this
fact to assess our simulation results for the cluster mor-
phology with those clusters experimentally observed close
to the phase separation and around the boundary of
gelation. To establish such comparison, one should notice
that ξ ∼ λ − 1.
Figure 2(b) shows the experimental results for ξ ¼ 0.11

and two different values of cp=c�p taken from Refs. [17,19].

FIG. 2. (a) Phase diagram of colloid-polymer mixtures for small
attraction ranges, ξ ¼ 2R=σ, with R being the polymer radius of
gyration. cp and c�p are the polymer and overlap concentrations,
respectively. Note that the scale has been inverted to directly
compare with Fig. 1. Empty symbols represent a fluid phase, solid
symbols the phase separation or gel states, and half solid-empty
symbols are the fluid-crystal coexistence. Data correspond to the
following experimental systems: ξ ¼ 0.08 (⊳) [29], ξ ¼ 0.11 (⊲)
[19], ξ ¼ 0.09 (△) [30], ξ ¼ 0.078 (⬠) [31], ξ ¼ 0.026 (▽) [32],
ξ ¼ 0.08 (□) [2], ξ ¼ 0.02, 0.04, 0.15 (⬡) [17], and ξ ¼ 0.09 (⋄)
[33]. Colored regions correspond to the gas-liquid separation from
Ref. [34] and gelation from Ref. [35] for an Asakura-Oosawa
system with ξ ¼ 0.1. Radius of gyration, Rg, for clusters made
of s particles for experimental systems at (b) different cp=c�p and
same ξ taken from Ref. [19] and (c) similar cp=c�p and different ξ
taken from Refs. [19] (⊲) and [17] (⬡). Dashed lines correspond
to Rg ∝ s1=1.65; the fit for small clusters in simulations. For large
clusters, we plot the corresponding Rg consistent with the df
reported in Ref. [19] and the colored region in (c) denotes the
relation Rg ∝ s1=2.0.
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We also include the fit for small clusters obtained in
Fig. 1(b) and for large clusters we plot the Rg consistent
with the values reported in Ref. [19]. The physical scenario
displayed in Fig. 1(b) is nicely confirmed. In the fluid
state, cp ∼ 0.057c�p [see Fig. 2(a)], large clusters exhibit a
df ∼ 2.01, while in the vicinity of the gel-like state,
cp ∼ 0.229c�p, df is about 2.14.
Furthermore, the trend for large clusters discussed in

Fig. 1(c) is also confirmed in the experiments at similar cp
[see Fig. 2(c)], but different attraction range; ξ ¼ 0.11 from
Ref. [19] and ξ ¼ 0.02 from Ref. [17]; i.e., df does not
change appreciably with ξ for small clusters and for
large clusters df is the same in both systems provided
they have similar cp=c�p. Figures 2(b) and 2(c) also confirm
the crossover point at s ¼ 10.
We now look at in more detail the morphology of small

and large clusters obtained from MC simulations. The
morphology of small clusters [Fig. 3(a)] becomes slightly
more compact by decreasing B�

2. At large B�
2, df ¼ 1.64,

whereas for a small B�
2, df ¼ 1.84, representing a small

increase of 12%. Hence, despite the large difference
between the thermodynamic states (from a B�

2 around
the fluid-solid coexistence to one around the metastable
gas-liquid phase separation), small clusters display practi-
cally similar morphology. The branchlike morphology of
small clusters is associated with the entropy favoring

noncompact cluster, regardless the attraction strength
between particles. df of small clusters in the ground state
(T ¼ 0) is more compact [38–40].
Different from that of small clusters, above the coexist-

ence region, large clusters [Fig. 3(b)] become more compact
as the attraction strength increases towards the phase
separation boundary [see Fig. 1(a)]. The morphology of
large clusters predicted by the simulations can be classified
as a kind of intermediate structure with 2 < df < 3.
The MC results are summarized in Fig. 3(c), which

shows df as a function of B�
2 for small and large clusters at

ϕ ¼ 0.08 for different attraction ranges. As shown in the
figure, for small clusters, df slightly increases with B�

2 and
essentially takes an almost constant value of df ∼ 1.68. For
large clusters, df increases from 1.9 to 2.5 when the system
goes from a fluid state to the coexistence region, passing
through the fluid-crystal coexistence. In the fluid phase,
where the effects of the attraction are barely noticeable,
large clusters are seldomly observed and the df shows a
large error bar. In such a thermodynamic state, df is similar
to the one observed in the diffusion-limited cluster aggre-
gation (DLCA) process [41]. Inside the fluid-crystal region,
where the potential energy becomes relevant, the cluster
topology depends on the attraction strength. Interestingly,
near the phase separation, clusters have a structure similar
to those driven by the reaction-limited cluster aggregation
(RLCA) mechanism [42]. The simulation results are very
robust, in the sense that a similar trend is observed at
different densities; df has a small dependence on the
density (data not shown), provided it is below the perco-
lation density [see Fig. 1(a)].
Our observations are further supported by experimental

results even though we need to reanalyze the reported
data. First, for small clusters, Fig. 4(a) displays the Rg for
small clusters in a colloid-polymer mixture taken from
Refs. [17,19]. Additionally, the fits shown in Fig. 3(a) are
also illustrated. Despite the dispersion in the experimental
data, the small clusters follow the same trend as in the MC
simulations. This corroborates that the cluster morphology
of small clusters is indeed not sensitive to the interaction
potential.
Second, the trend for large clusters [see Fig. 3(b)] is

confirmed by experimental measurements (again despite the
experimental dispersion) performed at different thermody-
namic states [see Fig. 4(b)]. Lu et al. showed that in colloid-
polymer mixtures close to gelation, the cluster morphology
strongly depends on the attraction range [17]. Taking the
experimental data from Ref. [17], we have calculated df of
clusters to compare with the MC simulations for the cluster
size up to s ∼ 100. We note that due to the limited number
of points from the experimental results, the error bars are
relatively large. Figure 4(c) displays the experimental df
along with data from Ref. [19]. Interestingly, the exper-
imental data follow a trend similar to the one depicted in

FIG. 3. Radius of gyration, Rg, for (a) small and (b) large
clusters made of s particles interacting with a SW potential for
several values of B�

2 at the same ϕ ¼ 0.08 and λ ¼ 1.1. In (a) the
Rg for clusters in the ground state from Ref. [39] is also shown.
(c) Fractal dimension for small and large clusters as a function of
ð1 − B�

2Þ for the SW fluid of variable range, λ, at ϕ ¼ 0.08;
dashed line is a guide for the eye. Colored regions represent the
boundary of the gas-liquid and the fluid-crystal phase coexistence
displayed in Fig. 1(a).
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Fig. 3(c); for weak attractions df ∼ 1.8, but this value
increases systematically with the polymer concentration;
i.e., attraction between colloids increases, until the colloidal
dispersion reaches the gelation boundary with df ∼ 2.2.
At this point, the structure does not evolve any more as the
system enters the region of arrested states. Data from
Ref. [17] has larger error bars, but follows the same trend.
Therefore, the assessment of the MC results with available
experimental data demonstrates that the interplay of the
range and strength of the attraction, condensed into the B�

2,
determines the compactness and the fractal structure of
equilibrium clusters in colloid-polymer mixtures.
Using Monte Carlo simulations together with the rean-

alysis of experimental data, we illustrated that at equilib-
rium conditions, the cluster morphology should be
understood with two different size ranges. For small
clusters (s ≤ 10), their morphology is only slightly affected
by the thermodynamic state. However, the morphology of
large clusters, 10 < s ≤ 100, sensitively depends on the
interaction, and is solely determined by B�

2. Our findings
show that systems with larger B�

2 have large clusters with
open structures, while close to the phase separation with
smaller B�

2, large clusters are more compact. The reanalysis
of the previously reported experimental data exhibited a
similar trend: the fractal dimension of clusters formed at

weak attractions are more branched, df ∼ 1.8 (DLCA-like),
while close to the gel transitions they are more compact with
df ∼ 2.2 (RLCA-like). Thus, we have conclusively unrav-
eled the important role of B�

2 on the structure of the clusters
at equilibrium conditions and demonstrated the close rela-
tionship between the cluster morphology and the extended
law of corresponding states in SAHS systems.
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