
 

Universal Features of Metastable State Energies in Cellular Matter

Sangwoo Kim,* Yiliang Wang,* and Sascha Hilgenfeldt
Mechanical Sciences and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, USA

(Received 31 January 2018; revised manuscript received 26 March 2018; published 11 June 2018)

Mechanical equilibrium states of cellular matter are overwhelmingly metastable and separated from each
other by topology changes. Using theory and simulations, it is shown that for a wide class of energy
functionals in 2D, including those describing tissue cell layers, local energy differences between
neighboring metastable states as well as global energy differences between initial states and ground
states are governed by simple, universal relations. Knowledge of instantaneous length of an edge
undergoing a T1 transition is sufficient to predict local energy changes, while the initial edge length
distribution yields a successful prediction for the global energy difference. An analytical understanding of
the model parameters is provided.
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In interacting many-particle systems, energy landscapes
are complex and hard to analyze, in particular when disorder
precludes symmetries. Considerable effort has focused on
particle aggregates with short-range interactions (hard core
or soft) in the context of granular media [1–4], optimal
packings [5–8], or the description of jammed states [9–12].
In cellular matter, on the other hand, the main energy
contributions result from the shape and properties of the
interfaces between deformable domains that fill available
space (with a negligible continuous phase), making the
interfaces surfaces of polygons (in two dimensions) or
polyhedra (in three dimensions) [13,14]. The exclusion of
bulk energy contributions generally means that the areas
(2D) or volumes (3D) of individual domains remain constant,
while their shape and relative positioning is variable; the
simplest physical example is a dry soap froth [15]. Cellular
matter also includes large classes of systems considered in
the context of modeling biological tissues, with energy
contributions from elasticity and cell-cell adhesion [16–18],
bulk elasticity [19,20], or viscous effects [21,22].
Recent work has focused on low-energy states of cellular

matter, which we will call “ground states,” although the
global lowest-energy state is in general unknown and may
not be unique [23]. Ground states in this sense are found
through a variety of protocols and annealing strategies,
and their energies are typically insensitive to the method
[23,24]. Tissuelike 2D systems show a qualitative transition
of the ground state: For low values of interdomain adhesion
energy (relative to elastic deformation penalties), the
material ground state retains rigidity (finite resistance to
external forces) [18], while for higher adhesion it becomes
degenerate [25,26] with individual domains minimizing
their energy separately (the material becomes “floppy”).
This “loss of rigidity transition” [19] occurs for static as
well as for fluctuating systems, where it resembles a solid-
fluid transition [19,27].

The present work, by contrast, focuses on metastable
states (local energy minima) significantly above the ground
state energy. These are common in cellular systems in
nature: If the energy barriers exceed thermal energies, as
expected for domains above colloidal size, a system needs
induced stimuli to evolve towards the ground state. We
show how limited information on the geometry of a generic
rigid 2D cellular system quantitatively predicts the energy
of the metastable states, governs individual topological
transitions, and describes an efficient pathway of lowering
energy towards a ground state.
Cellular matter domains (identified by index i) interact

with nearest neighbors only, each contributing to a total
energy E ¼ P

iEi. Restricting ourselves to 2D systems, the
requirement of dominant interfacial energy means that we
can generally write

Ei ¼
Z

Pi

uP;iðsÞds ¼ c0iPi þ
1

2
c1iP2

i þ � � � ; ð1Þ

expanding the general energy per length uP;iðsÞ in the
perimeter lengths Pi. The shown truncation after the second
term is representative of the generic class of 2D tissue
model studied in the recent literature [16,18,19,25,28].
For domains or cells of the same type, the coefficients are
uniform (c0, c1).
Setting c1 ¼ 0 describes a 2D foam, identifying the

interfacial tension with c0 (¼ 1 without loss of generality).
Including the second order term in Pi recovers the general
case of “tissue” energy. By rearranging terms, we obtain the
following two functionals,

Ef ¼ 1

2L0

X

i

Pi; Et ¼
1

2L0

X

i

�ðPi − Pi;0Þ2
Pi;0

− γPi

�

;

ð2Þ
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where all lengths are normalized by L0, the edge length of a
regular hexagon of area Atot=N for a system of N domains
covering an area Atot. In Et, the first and second terms can
be interpreted as perimeter elasticity and adhesion energy,
respectively [16,18]. Pi;0 is the mechanical equilibrium
perimeter of cell i in isolation, here chosen as the perimeter
of a circle with the same area as domain i (other choices
of Pi;0 merely rescale relevant energy differences [18]).
The dimensionless adhesion strength γ is normalized by
the perimeter elastic modulus. It was shown [17–19,25] that
loss of rigidity occurs when γ > γc ≈ 0.12. Below this
value, γ is a nongeometric determinant of system energy.
We will show that energies can, nevertheless, be inferred
from geometry alone.
Metastable states are separated from each other by T1

topological transitions [29], where a single edge of length
L reorients (it “flips”) to change topology of four neigh-
boring cells [Fig. 1(a)]. For rigid or solid states (foams or
tissues with γ < γc), there are metastable states on both
sides of the transition, while the intermediate configuration
of four-way-connected edges is a local maximum (the
energy barrier) [30].
We evaluate metastable states in SURFACE EVOLVER (SE)

[31] with the quadratic or circular arc vertex models (i.e.,
edges between domains contain additional vertices and
are generally not straight), on rectangles with periodic
boundary conditions containing typically N ¼ 400 or 900
domains. Initial patterns are Voronoi constructs from
various point distributions. SE fixes domain areas to match
a desired area distribution (its coefficient of variation cA

quantifies polydispersity) and finds a local energy mini-
mum with the given topology and energy functional.
We analyze the metastable states after and before the
T1. Geometrically, T1s are local events—the edge length
changes jδLj and their standard deviation σδL decay
exponentially with distance from the flipping edge.
Figures 1(b) and 1(c) identify a characteristic decay scale
κ−1 ≈ 2.8, in quantitative agreement with earlier find-
ings [32].
This study focuses not on the energy barrier height

between the states [28], but on the distribution of the energy
differences ΔE between the system energies after and
before the T1. We find that the expectation value of ΔE
has a strong linear correlation with the initial length L of
the flipping edge:

ΔE ¼ αðL − LcÞ: ð3Þ
As seen in Fig. 2(a), the scatter around this linear relation is
particularly small for energetically favorable T1s (ΔE < 0).
For this range, data from≳30 000 T1 transitions for systems
of various polydispersities and various energy functionals
were analyzed. It is a surprising fact that α and Lc are found
to be system independent and robust against protocol
changes: (i) different methods of domain preparation—see
Supplemental Material [33]—have no perceptible effect on
Eq. (3) or on the scatter of the data; (ii) the order of T1s
is irrelevant; (iii) widely different polydispersities result in
the same relation [Fig. 2(b)]; (iv) even simulations using Et
are in quantitative agreement with those using Ef: If the
perimeter lengths of the tissue in mechanical equilibrium are
P�
i , computing E�

f ¼ ð1=2L0Þ
P

iP
�
i yields an equivalent

foam energy whose correlation with L is quantitatively the
same [Fig. 2(b)], even though the energetics of the T1
processes that yield the configurations are quite different,
and the configurations are not metastable states under Ef.
The linear correlation Eq. (3) remains unchanged for all
tense tissues (γ < γc). Beyond γc, system states lose rigidity
and all ΔE are trivially zero. Very recent work on three-
dimensional epithelial sheets [27] likewise finds a linear
relation between flipping-face area and energy differences in
agreement with Eq. (3).
An average over all data is described well by Eq. (3) with

a universal critical edge length Lc ≈ 0.611 and a universal
slope α ≈ 0.827. Beyond empirical data, we can obtain
analytical approximations to α and Lc from the simple
elementary T1 transition between a honeycomb pattern and a
quadruple defect [two neighboring dislocations, Fig. 2(c)].
Changing the areas of the pentagons and heptagons gen-
erates elementary polydisperse configurations. All vertices
not belonging to cells participating in the T1 are fixed at their
honeycomb positions [red in Fig. 2(c)]. Minimizing Ef with
respect to the remaining degrees of freedom yields analytical
metastable state geometries as solutions to a system of
algebraic equations (see Supplemental Material [33]). A
linear fit to the resulting ΔEðLÞ values obtains αa ≈ 0.791

FIG. 1. (a) A T1 transition flipping an edge of initial length L,
going through an unstable four-way intermediate configuration
and ending up with altered topologies of adjacent cells. Colors
represent polygonal edge number: 5 (yellow), 6 (gray), 7 (blue).
(b) Binned plot of edge length change jδLj as a function of
distance r from the center of the T1 edge; rs (vertical dashed line)
is the distance beyond which the analytical model assumes
stochastic length changes. (c) The standard deviations of absolute
(open symbols) and relative (filled symbols) edge length changes
for r > rs decay as expð−κrÞ (black dashed line).

PHYSICAL REVIEW LETTERS 120, 248001 (2018)

248001-2



and Lc;a ≈ 0.627, in very good agreement with data
[Fig. 2(d)].
Now we use this information about energetic effects of

(spatially local) T1s to infer the global energy of a given
metastable state, not only for purposes of easy general
diagnostics, but in order to assess whether metastability
interferes with the ability to detect the loss-of-rigidity
transition mentioned above. Both simulations and analyti-
cal computations are used. The simulations should reflect
processes of mechanical excitation overcoming energy
barriers, e.g., by shearing foams [34,35], agitating emul-
sions [36,37], or by cell mobility in tissues [38], so that the
system energy approaches a ground state through succes-
sive T1s. Equation (3) suggests flipping short edges
(L < Lc) will selectively lower the system energy.
However, simulations may miss energetically favorable
edge flips if these edges are surrounded by large-area cells

(they are relatively short, but absolutely longer than Lc).
Therefore, we shall focus on relative edge length l,

l ¼ L=minðL0i; L0jÞ; ð4Þ

where L0i ¼ 21=23−3=4A1=2
i is the edge length of a regular

hexagon of area Ai, and the domains i, j share the edge. As
Fig. 2(e) shows, ΔEðlÞ is still a linear function,

ΔE ¼ βðl − lcÞ; ð5Þ

and can still be described with system-independent param-
eters lc ≈ 0.654 and β ≈ 0.791 (see Supplemental Material
for data [33]). These parameters can be understood by
analyzing the extreme cases: Near the ground state, the
domain shapes do not deviate much from regular polygons,
for which the ratio of perimeter to A1=2 is essentially
constant [39]. An average polygon undergoing a T1 with
L ≈ Lc then has a shorter perimeter by the factor
ð5þ LcÞ=6; with Eq. (4) this leads to the estimate
lc;a ¼ 6Lc=ð5þ LcÞ ≈ 0.654. Conversely, any T1 with
l → 0 must have the same result as L → 0, so that
αLc ¼ βlc, resulting in βa ≈ 0.772. The analytical estimate
again proves very accurate [Fig. 2(e)].
Our SE simulations establish metastable states after

every T1 of a selected edge. Figure 3(a) compares the
energy reduction ΔEtotðnÞ ¼ EðnÞ − Eð0Þ after n T1s
using different selection strategies: systematic cycling
through a complete list of edges, random selection, and
the “greedy” algorithm suggested by Eq. (5), which always
flips the edge with the shortest current l. All algorithms
reverse T1s with ΔE > 0, and try a different edge next;
they all asymptote to very similar energies (supporting the
notion of a well-defined ground state energy), but the
greedy algorithm needs much less computational effort
(and its final energy is slightly lower). These findings are
independent of polydispersity or energy functional.

FIG. 2. (a) Energy change by T1 transition ΔE versus initial
edge length L in monodisperse foam samples (blue) with binned
data for ΔE < 0 (orange circles) and the overall linear relation
Eq. (3) (dashed line); (b) the same in polydisperse foams and
polydisperse tissue systems with different adhesion; (c) simplified
local configurations for analytical calculations: (left) monodis-
perse hexagonal pattern, (center) one quadruple defect with equal
cell areas, (right) a quadruple defect with area polydispersity (at
fixed total area). Vertex positions indicated in red are fixed, the
others represent optimization variables. (d) Combined ΔEðLÞ
data from all simulations, binned (circles) with best linear fit
using α, Lc (black) and analytical linear relation using αa, Lc;a

(red); (e) like (d), for ΔEðlÞ data and correlations using β;lc and
their analytical analogs βa, lc;a.

FIG. 3. (a) Decrease of energy with the number of T1
transitions for three different algorithms. The “greedy” algorithm
always flips the current shortest edge and yields a very good
approximation to the ground state energy in a small number of
steps. (b) Evolution of the relative edge length probability
distribution pnðlÞ for a polydisperse (cA ¼ 0.4) foam sample
of N ¼ 900, showing distributions at n ¼ 0 [pðlÞ], n ¼ 88, and
n ¼ nfin ¼ 324.
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Analytically, a total energy drop as in Fig. 3(a) can be
predicted under the assumption that the effects of the
(spatially localized) T1s are independent. Then, EtotðnÞ can
be inferred from the initial probability distribution pðlÞ
only—precisely those edges with l < lc should flip.
In Fig. 3(b), a typical development of pðlÞ with n in
simulations is shown—indeed, the probability weight
below lc becomes negligible towards the end.
Then, an edge of length l flips after nðlÞ T1s, such that

nðlÞ ¼ 3N
Z

l

0

pðl0Þdl0; ð6Þ

where 3N is the total number of edges, and the predicted
final number of T1s is nfin ¼ nðlcÞ. It follows that

ΔEtotðnÞ ¼
Z

lðnÞ

0

3NΔEðlÞpðlÞdl; ð7Þ

where lðnÞ is given by inverting Eq. (6). Taking into
account Eq. (5) and using integration by parts, it is easy to
show that

ΔEtotðnÞ
3Nβlc

¼ lðnÞ − lc

lc
P(lðnÞ) − 1

lc

Z
lðnÞ

0

PðlÞdl; ð8Þ

with PðlÞ≡ R
l
0 pðl0Þdl0. Equation (8) gives the predicted

energy decrease as a fraction of a hypothetical maximum;
note that −βlc ¼ ΔEð0Þ according to Eq. (5).
The prediction Eq. (8) only needs the initial distribution

pðlÞ for l < lc; any integrable fit to pðlÞ yields an
explicit analytical expression for ΔEtot. Figure 4 compares
greedy simulation results of different foams and tissues
(only energy-lowering steps are accepted) with Eq. (8); for
tissue systems, equivalent foam energies E�

f are again used.
The agreement is good, but jΔEtotj is systematically
underestimated by typically 5%–15%.
This bias can be eliminated by modeling the shape

changes in pnðlÞ shown in Fig. 3(b); these come about
because T1s induce exponentially decaying fluctuations in
the absolute or relative lengths of edges beyond a character-
istic distance rs [cf. Figs. 1(b) and 1(c)]. This stochastic
fluctuation of width σl acts as a convolution on pðlÞ,
increasing its width and lowering the value of lðnÞ to
lðnÞ − Δl, so that the currently shortest edges become
slightly shorter and their T1 lowers the energy slightly
more. The system independence of the features seen in
Figs. 1(c) and 2(e) allows for an analytical computation of
this convolution in the limit of Gaussian distributions, from
which Δl ≈ 0.037 follows. The details are found in the
Supplemental Material [33].
Accordingly, we modify Eq. (8) to

ΔEtotðnÞ
3Nβlc

¼leffðnÞ−lc

lc
P(lðnÞ)− 1

lc

Z
lðnÞ

0

PðlÞdl; ð9Þ

with leff ¼ maxðl − Δl; 0Þ, to avoid negative edge
lengths. The systematic error in the comparisons to
simulation results is largely eliminated (see Fig. 4), though
a statistical error of a few percent remains (see
Supplemental Material [33]). The predicted jΔEtotj is still
obtained from the initial distribution only, and thus the
asymptotic ground state energy is accurately predicted from
just a snapshot of an initial metastable state. We stress that
the simulations employ a variety of strategies for annealing
to the ground state [33], which can lead to a larger empirical
nfin, but nevertheless, this “single-shot” prediction of ΔEtot
is in good agreement. Also note that tissue samples with
γ ¼ 0.1 are much closer to the critical γc than those with
γ ¼ 0, but the quality of the prediction is unchanged.
We have demonstrated that the geometry of 2D meta-

stable states quantitatively determines their energy both
locally and globally, beyond the trivial summing of edge
lengths to obtain a foam energy: locally, the ΔE of a T1 is
predicted by its edge length. Globally, T1 energies integrate
to approximate the metastable state energy above the
ground state ΔEtot. Energy-lowering T1 transitions are
almost exclusively confined to edges with relative length
l < lc, and the critical value is universal across poly-
dispersities and energy functional forms. Only these edges
“store” the structural energy above the ground state, and
they are relatively few [we did not find metastable states
with PðlcÞ > 0.18]. Apart from the foam and tissue models
discussed here, we have conducted less extensive simu-
lations with energy functionals including area elasticity,

FIG. 4. Energy decrease with T1 number n comparing the
simulation results (red; greedy algorithm) with theoretical
predictions from Eq. (8) (orange, dashed line) and the refined
theory Eq. (9) (blue, solid line). (a) Foams of different
polydispersity, using Ef; (b) examples of tissues (E�

f,
cA ¼ 0.4) with γ ¼ 0 and γ ¼ 0.1.
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with altered boundary conditions, and even with springlike
interactions, without changes to the reported relations.
The remarkable simplicity and generality of these findings
is reminiscent of the classification of rigid and floppy
ground states by the purely geometric shape index p̄ ¼
P

iPi=A
1=2
i =N of the domains, independent of energy

functionals [18,19,40]. Likewise, we rationalize the uni-
versal nature of our results by the strong geometric
constraints imposed by a space-filling 2D structure with
rigid domain boundaries, making all possible T1 energy
changes perturbative. Beyond the loss of rigidity transition,
domains acquire different geometric degrees of freedom,
and the relations cease to be valid. Importantly, however,
our results show that metastable states of rigid or solid
systems can have values of p̄ (i.e., equivalent foam
energies) significantly larger than the critical p̄c for loss
of rigidity in the ground state. While there are other
indicators of floppy or fluid systems, this illustrates that
the diagnostic meaning of p̄ depends on whether the system
is close to the ground state.
According to our results, a simple snapshot of any

metastable 2D sample (a tissue, an emulsion, a polycrystal)
in a rigid or solid state suffices to classify it in terms of its
distance from the type of ground state analyzed in previous
work [19,25]. Short edges are weak spots favoring T1
transitions, and a concentration of short edges indicates
mechanically weak regions. The diagnostics of material
properties and their spatial distribution (in industrial
applications) or the occurrence and distribution of patho-
logical changes (in biological tissues) is aided by these
findings. The geometric information used here can be
further combined with topological statistics [34,41,42],
which is the subject of ongoing work [43].
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