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We study the excitation spectrum in the dimer phase of the Shastry-Sutherland model by using an
unbiased variational method that works in the thermodynamic limit. The method outputs dynamical
correlation functions in all possible channels. This output is exploited to identify the order parameters with
the highest susceptibility (single or multitriplon condensation in a specific channel) upon approaching a
quantum phase transition in the magnetic field versus the J0=J phase diagram. We find four different
instabilities: antiferro spin nematic, plaquette spin nematic, stripe magnetic order, and plaquette order, two
of which have been reported in previous studies.
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The Shastry-Sutherland model (SSM) has become a
paradigmatic Hamiltonian of frustrated quantum magnet-
ism [1,2] because it includes an exactly solvable ground
state [1], very heavy low-energy excitations [3–8], exotic
phases obtained upon varying the ratio J0=J between two
competing exchange constants [4,7,9–16], and a series of
magnetic field induced magnetization plateaux [3,17–31].
Its realization in SrCu2ðBO3Þ2 [3,32,33] enabled various
experimental studies, including magnetization [32,34–39],
specific heat [40], inelastic neutron scattering (NS)
[41–47], far-infrared [48], electron spin resonance (ESR)
[49,50], Raman scattering [51], and nuclear magnetic
resonance (NMR) [37,52,53]. These studies revealed that
a finite Dzyaloshinskii-Moriya (DM) interaction [54,55]
must be added to the SSM in order to account for several
properties of SrCu2ðBO3Þ2 [42–44,46,49,50,53,56–60].
Despite the great theoretical efforts devoted to the SSM,

the problem is still far from being solved. Perturbative
approaches are only applicable in narrow regimes and
conventional numerical methods suffer from severe size
effects. As a consequence, the nature of the quantum phase
diagram has been debated for a long time [4,7,9–16]. It is
thus desirable to develop and apply alternative approaches.
The infinite projected entangled-pair states (iPEPS) is an
example of an alternative approach that works in the
thermodynamic limit [16,29,61]. However, it relies heavily
on the initial guess of the physical states and it is difficult to
extract dynamical responses.
In this Letter, we introduce an unbiased variational

method to calculate the excitation spectrum and dynamical
responses (susceptibilities) of the SSM in the dimer phase
[62]. The method works in the thermodynamic limit and it
complements alternative approaches like iPEPS. The basic
idea was originally introduced to compute the single-hole
dispersion of the square lattice t-J model [67,68]. The same

method was applied to the Shastry-Sutherland lattice t-J
model [69,70]. Here we exploit this idea to compute
dynamical correlators and dominant instabilities. By work-
ing in a reduced Hilbert space, which preserves all model
symmetries, we obtain low energy excitations classified by
quantum numbers. We then predict the character of the
neighboring phases by detecting the order parameter with
highest susceptibility. Besides confirming the previously
reported plaquette order and antiferro spin-nematic phases,
we find two new phases; namely, a plaquette spin-nematic
phase and stripe magnetic ordering, induced by simulta-
neously increasing the magnetic field and J0=J. In particu-
lar, the plaquette spin-nematic phase explains the nature of
the two-triplon states (pinwheels) that crystallize at higher
field values [29].
We consider the spin-1

2
SSM under a magnetic field [1]:

H ¼ J
X
hiji

Si · Sj þ J0
X
⟪ij⟫

Si · Sj − h
X
i

Szi ; ð1Þ

where hiji and ⟪ij⟫ denote intradimer and interdimer
neighbors. The unit cell has 4 sites (see Fig. 1). The exact
ground state for small enough J0=J and h is a direct product
of singlet states on all dimers [1]. The elementary excita-
tions of this “dimer phase” are singlet-triplet excitations
known as triplons. Triplons are dressed by quantum
fluctuations with a magnetic correlation length ξ that
increases with J0=J. Methods that can account for the
spatial extent of these quantum fluctuations should provide
a good description of the low-energy excitation spectrum of
the dimer phase.
We start the process by creating local excited states jφii

(e.g., single and two triplons). We then project these
representative states into subspaces with fixed momentum k,
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jφiðkÞi≡ P̂kjφiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hφijP̂kjφii

q ; ð2Þ

where the projector is defined as P̂k ≡ 1
N

P
re

ik·rT̂ðrÞ.
N → ∞ (thermodynamic limit) is the total number of unit
cells, and T̂ðrÞ is the translation operator. Application ofH to
jφiðkÞi generates new states that dress the corresponding
quasiparticle excitation. This procedure can be applied
iteratively to systematically improve the variational space.
After M iterations, we obtain a basis fφiðkÞg with good
quantum numbers k and Sztot. The number of iterations
determines the spatial range l of the fluctuations that dress
the quasiparticle, so the method is then expected to produce
accurate results for l≳ ξ.
The eigenvalues and eigenvectors of the Hamiltonian

restricted to the variational space are obtained by applying
the implicitly restarted Arnoldi method [71,72]. The
eigenvectors are classified by the Little Group of C4v for
each momentum k. A continuous phase transition manifests
via a vanishing gap (condensation) that signals a phase
transition into a broken symmetry state. The symmetry of
the new state is determined by the irreducible representa-
tion (IREP) of the eigenstate that becomes gapless. To keep
the method unbiased, the initial basis must not break the
point group symmetry of H [73].
For illustration, we first focus on the Sztot ¼ 0 sector

relevant to h ¼ 0. We include D ¼ 14 Sztot ¼ 0 initial states
to start the iteration [74] and then apply Eq. (1) onto this
basis to systematically increase the variational space [76].
After obtaining the lowest energy eigenstates, we use the
eigenfunction to calculate Stot and its IREP [77].
In contrast to the result obtained with perturbative

continuous unitary transformations (CUTs) [7], we find
that the first instability as a function of J0=J (for h ¼ 0)
takes place in the Stot ¼ 0 channel with IREP A2 [80].
Figure 2 shows the evolution of the gap as a function ofM.
Convergence is reached beyond M ¼ 3 for J0=J ≲ 0.5, but

the increase of ξ slows down the convergence for larger
J0=J. Although Eq. (1) does not conserve the triplon
number, the state that condenses is adiabatically connected
with the corresponding Stot ¼ 0 IREP A2 pure two-triplon
state in the J0=J → 0 limit (see Fig. 2).
We can read out the critical value of J0=J when this

state condenses. Figure 3(a) shows the evolution of the
critical value as we increase M (circles). At M ¼ 8,
ðJ0c=JÞðM¼8Þ ≈ 0.702. Previous tensor network based cal-
culations [15,16] showed that the transition is actually of
first order and the transition point is at J0c=J ¼ 0.675 [16].
A susceptibility analysis, like the one presented here, is in
general inadequate to detect first order transitions.
However, it can still be used to detect the nature of the
order parameter if the system still transitions into the
broken symmetry state with highest susceptibility [81].
Given that the first-order transition takes place when this
susceptibility is still finite, J0c=J turns out to be smaller than
the value at which the susceptibility becomes divergent.
This observation explains the difference between the values

FIG. 1. Lattice structure of the SSM. Intradimer and interdimer
exchanges are denoted by J (solid line) and J0 (dashed line). The
basis of the lattice is labeled by fa1; a2g. The point group
operations fσv; σd; C2; C4g are denoted accordingly.
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FIG. 2. Gap of the lowest Stot ¼ 0, k ¼ ð0; 0ÞA2 state, at h ¼ 0.
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states at 4 different magnetic fields.
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of J0c=J obtained with both approaches. In addition, it
illustrates their complementary nature. The unbiased sus-
ceptibility analysis can be used to detect candidates for
broken symmetry states. These candidates can then be
tested with biased variational techniques, such as iPEPS,
which can produce more accurate values of the transi-
tion point.
Since the two-triplon bound state has Stot ¼ 0, the new

ground state (condensate) must be nonmagnetic. Further-
more, since the A2 state is odd (even) under reflection
(rotation) [74], the new ordered state should only break
reflection but not rotation symmetries. These features are
consistent with the previously reported plaquette ordering
[10,13,15,16]. Figure 4(b) shows a schematic plot of the
corresponding bond ordering. As expected, hSi · Sji
becomes different on different plaquettes and there is no
magnetic order. In other words, the plaquette order

parameter can be defined as hSi · Sj − Si · Sj0 i, where ij
and ij0 are two bonds related by a mirror reflection [see
Fig. 4(b)].
We consider now the case of nonzero magnetic field. The

energy of excited states with finite Sztot decreases linearly in
h. Figure 3(b) shows that the dominant instability for
h=J ¼ 0.2 corresponds to condensation of a state with
Stot ¼ 1, k ¼ ð0; 0Þ, and IREP E, leading to the stripe
magnetic order depicted in Fig. 4(c). The IREP E is a two-
dimensional representation corresponding to the two pos-
sible directions of the stripes (along a1 or a2). We note that
the two same-color spins in the same unit cell are not
identical (the corresponding mirror symmetry is broken).
The stripe state has the highest susceptibility over a

narrow range 0.66≲ J0=J ≲ 0.70 for M ¼ 8 iterations [see
Fig. 4(a)]. Because of the frustrated exchange interactions,
the energies of a few other states are not much higher than
the stripe state [74]. Among them, the lowest one is a two-
triplon state with k ¼ ð0; 0Þ and IREP B1, corresponding to
vector chiral order [82–84]. Although their energies are
slightly higher than the stripe magnetic instability within
M ≤ 8, the situation may change in the M → ∞ limit, or if
small perturbations are added to the original model.
The Stot ¼ 2 excited states take over for higher magnetic

field values. Figure 3(c) shows that for h=J ¼ 0.6 the
lowest excited state is the Stot ¼ 2 two-triplon bound state
with momentum k ¼ ð0; 0Þ and IREP A2. The fact that this
state and the Stot ¼ 0 state that condenses at zero field
belong to the same point group IREP A2 indicates that the
condensation of the Stot ¼ 2 A2 state also leads to “pla-
quette” ordering [shown in Fig. 4(d)]; the difference being
that the Stot ¼ 2 condensate also breaks the U(1) symmetry
group of global spin rotations along the field direction,
leading to spin-nematic ordering. In other words, the local
bond order parameter is hSþi Sþj − Sþi S

þ
j0 i instead of

hSi · Sj − Si · Sj0 i (ij and ij0 denote two bonds connected
by a mirror reflection σd, see Fig. 4).
As indicated in Fig. 4(a), the “plaquette spin-nematic”

state covers a wide range 0.40≲ J0=J ≲ 0.66. It has been
shown in Ref. [29] that the 1

8
plateau at slightly higher

magnetic field values and J0=J ¼ 0.63 is induced by
crystallization of Sztot ¼ 2 bound states. A closer scrutiny
of the “pinwheel” structure of these bound states shows that
they locally preserve rotational symmetries, while breaking
reflection symmetries [29]; i.e., they are the same two-
triplon bound states that we are finding in the dilute limit.
Moving away from the plaquette spin-nematic phase

towards the J0=J ≪ 1 limit, it is already known from an
early perturbative calculation that Stot ¼ 2 two-triplon
bound states with k ¼ ðπ; πÞ give the highest susceptibility
[19]. This is confirmed by our variational method [see
Fig. 3(d)]. Since the two-triplon bound state has momen-
tum k ¼ ðπ; πÞ, the corresponding ordered state also breaks
translational symmetry. As shown in Fig. 4(e), hSþi Sþj i
changes sign going from one unit cell to its nearest
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FIG. 4. (a) Phase boundaries between the dimer state and its
neighboring phases, obtained fromM ¼ 8 iterations. (b) Plaquette
phase, order parameter defined as hSi · Sj − Si · Sj0 i. (c) Stripe
phase, order parameter defined as hSi − Sji. (d) Plaquette spin-
nematic phase, order parameter defined as hSþi Sþj − Sþi S

þ
j0 i.

(e) Antiferro spin-nematic phase (bond density wave), bonds
with the same line (solid/dashed) but different colors have
opposite hSþi Sþj i while bonds with different lines have different
jhSþi Sþj ij.
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neighbors. Similar to the case of the stripe ordering (which
also comes from condensation of IREP E states), there
are two choices for aligning the bonds. We note that the
breaking of the C4 lattice rotational symmetry leads to a
modulation of hSzi i that can be detected with NS
experiments.
It is worth mentioning that the two spin-nematic states

found in this Letter are different from nematic phases
discussed in various other contexts [85–88]. The so-called
“Ising-nematic” ordering corresponds to (discrete) lattice
rotation symmetry breaking. In contrast, “spin-nematic”
ordering corresponds to broken spin rotational symmetry.
The spin-nematic orderings discussed in this Letter break
both the point group symmetry and spin rotation symmetry
[89]. In other words, they are simultaneously Ising nematic
and spin nematic.
The frustrated nature of the SSM makes the calculation

of dynamical response a difficult task. To date, the only
calculation including multitriplon contributions is the
perturbative CUTs, which breaks down for J0=J ≳ 0.63
[90]. The variational Hilbert space generated by our method
thus provides a more reliable access to dynamical responses
via the continued fraction method [91].
Near the phase boundaries, we expect the susceptibilities

of corresponding order parameters to diverge at ω ¼ 0.
Magnetic orderings, such as the stripe phase, are detected
by computing the dynamic structure factor (DSF) [74,92]:

S−þðk;ωÞ ¼ 2π
X
ν

jhνjSþk j0ij2δðωþ E0 − EνÞ; ð3Þ

which is measured with inelastic NS. As shown Fig. 5(b),
the lowest peak of S−þðk;ωÞ approaches ω ¼ 0 near
the phase boundary indicating condensation of an Stot¼1
state.

The divergent susceptibilities of the other phases are
revealed by computing two-point dynamical correlation
functions of the corresponding order parameters. These
order parameters are the operators that create a state that has
finite overlap with the one that is condensing. For
J0=J ≪ 1, the lowest energy Stot ¼ 2 eigenstates are known
to be a linear combination of triplons located on nearest
(and next-nearest) neighbors [19,74]. Denoting the order
parameter as AS2E

k , the corresponding susceptibility is

χS2Eðk;ωÞ ¼ 2π
X
ν

jhνjAS2E
k j0ij2δðωþ E0 − EνÞ: ð4Þ

Similarly, using the approximate wave functions of the
Stot ¼ 2 A2 state and the Stot ¼ 0 A2 state [74], we can also
construct the order parameters and compute the corre-
sponding susceptibilities χS2A2

ðk;ωÞ and χS0A2
ðk;ωÞ.

Figure 5 shows the nearly divergent susceptibilities in each
channel by picking appropriate Hamiltonian parameters
near the phase boundaries.
While the tendency toward stripe ordering can be

detected with inelastic NS, the experimental detection of
the other phases is nontrivial. Lattice distortions induced by
the order parameter through magnetostriction can provide
indirect evidence if they are large enough to be detected
[82–84]. Experimental knobs, such as pressure, doping,
and magnetic field can drive the material into different
instabilities [39,47]. Thus, the method presented in this
Letter provides valuable insight for revealing the nature of
the new phases in such experiments. However, the model
relevant to SrCu2ðBO3Þ2 also includes DM interactions that
modify the single triplon dispersion and can potentially
change the phase diagram reported here. In addition, DM
interactions reduce the spin rotational symmetry of the
model, implying that they can change the nature of the
order parameters.
We emphasize that the applicability of the method is not

restricted to the SSM considered here. The same method
can be used to detect the instabilities of other quantum
paramagnets [93]. Especially, it is very difficult to enu-
merate all the possible instabilities for highly frustrated
systems. The low energy spectrum produced by our
method provides a valuable educated guess for biased
numerical approaches. Given that the method works in the
thermodynamic limit, it can also detect incommensurate
instabilities, which cannot be handled by most numerical
methods.
In summary, we have used an unbiased variational

method to study the excitation spectrum of the SSM in
the dimer phase. Several instabilities are found next to the
dimer phase corresponding to condensations of single-
triplon or two-triplon bound states. Two of the instabilities
(antiferro spin nematic and plaquette) are known from
previous studies and the others (plaquette spin nematic and
stripe) are newly discovered in this Letter. The same

FIG. 5. T ¼ 0 DSFs calculated near the phase boundaries at
M ¼ 8. (a)–(c) Lorentzian broadening factor η ¼ 0.02J is used.
(d) Lorentzian broadening factor η ¼ 0.001J is used.
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method can be used to compute relevant dynamical
correlation functions.
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