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We derive and study an effective spin model that explains the anomalous spin dynamics in the one-
dimensional Hubbard model with strong potential disorder. Assuming that charges are localized, we show
that spins are delocalized and their subdiffusive transport originates from a singular random distribution of
spin exchange interactions. The exponent relevant for the subdiffusion is determined by the Anderson
localization length and the density of the electrons. Although the analytical derivations are valid for low
particle density, numerical results for the full model reveal a qualitative agreement up to half filling.
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Introduction.—The many-body localization (MBL) [1,2]
has recently been intensively studied. A vast amount of
numerical data allowed us to identify the main properties of
MBL systems: vanishing steady transport, [3–10] absence
of thermalization [11–31], and logarithmic growth of
entanglement entropy [15,17,32–35]. It has also been found
that MBL prevents a driven system from heating up
[9,36–41]. These unusual properties can be explained via
the existence of a macroscopic number of local integrals of
motion [12,25,26,42–47].
While most theoretical studies so far concentrated on the

one-dimensional (1D) disordered model of interacting
spinless fermions, experiments on MBL are performed
on cold-fermion lattices [14,48–50] in which the relevant
model is the Hubbard model with spin-1=2 fermions,
whereby the disorder enters only via a random (or quasi-
periodic) charge potential. Recent numerical studies of
such a model [47,51–53] reveal that even at strong disorder,
localization and nonergodicity occur only in the charge
subsystem, implying a partial MBL. Unless one also
introduces an additional random magnetic field [47,54],
the spin remains delocalized [52,55–59] although the spin
transport is anomalously slow and subdiffusive [52].
In this Letter, we focus on an explanation of the slow

spin dynamics and subdiffusion within the disordered 1D
Hubbard model. We first demonstrate that in the case of
potential disorder and low particle density the spin dynam-
ics can be described by a squeezed isotropic Heisenberg
model, whereby the distribution of the random exchange
interactions is singular. Such an effective model can be
studied numerically quite in detail, but also analytically by
taking into account that the 1D spin dynamics is dominated
by weak links. In this manner, we show that spin excitations
spread over distance M in a characteristic time t such that

M ∝ tα with α ≃ λ=ðdþ λÞ, where d is the average distance
between singly occupied sites and λ is determined by the
Anderson localization length in the noninteracting system.
Although the mapping on the Heisenberg model is valid for
dilute systems d ≫ 1, numerical results for strongly dis-
ordered Hubbard model reveal that the same qualitative
spin dynamics remains valid for all densities even up to half
filling.
Model.—Our aim is to establish the spin dynamics in the

disordered Hubbard chain,

H¼−th
X
iσ

ðc†iþ1σciσþH:c:Þþ
X
i

εiniþU
X
i

ni↑ni↓; ð1Þ

where ni ¼ ni↑ þ ni↓ and niσ ¼ c†iσciσ. We study the model
with L sites and N electrons, fixing also the total spin
projection Sztot ¼ 0. We assume a uniform distribution of
random charge potentials, εi ∈ ½−W;W�, and we set the
hopping integral th ¼ 1.
Two electrons.—In order to gain a preliminary insight to

the spin dynamics, we first study two electrons. The
dynamics of a few interacting spinless particles has been
studied previously [60–62]. Here, we study for illustration
N ¼ 2 electrons with opposite spin projections that propa-
gate on the chain with L ¼ 16 sites. Assuming that particles
are initially at sites j and l, jψð0Þi ¼ c†l↓c

†
j↑j0i, the

propagation of jψðtÞi is obtained via exact diagonalization.
Figures 1(a) and 1(b) show, respectively, the time depend-
ence of the local spin hSzi iðtÞ ¼ 1

2
hψðtÞjni↑ − ni↓jψðtÞi and

the density hniiðtÞ ¼ hψðtÞjnijψðtÞi for one configuration
of εi corresponding to W ¼ 8. Although for such strong
disorder the charge degrees appear to be fully localized,
spins undergo oscillations.
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Effective spin model.—The coexistence of almost frozen
charges and oscillating spins suggests that one can derive
an effective spin model, e.g., see Refs. [63,64]. To this end,
we use the Anderson states as the basis; i.e., we use the
single-particle eigenstates, ϕia ¼ hijai, of the noninteract-
ing (U ¼ 0) model. Then,

H ¼
X
aσ

ϵac
†
aσcaσ þ

U
2

X
aa0bb0σ

χaba0b0c
†
aσc

†
bσ̄cb0σ̄ca0σ;

χaba0b0 ¼
X
i

ϕ�
iaϕ

�
ibϕib0ϕia0 : ð2Þ

Assuming that the charge dynamics is frozen, the main
effect arising from the presence of the Coulomb interaction
comes from terms with either a ¼ a0, b ¼ b0 or a ¼ b0,
b ¼ a0. Then, the Hubbard term in Eq. (2) can be written in
a SU(2)-invariant form

HU ¼ 1

2

X
a≠b

Jab

�
1

4
nanb − S⃗a · S⃗b

�
; ð3Þ

where we use standard density and spin operators: na ¼
na↑ þ na↓, Sza ¼ 1

2
ðna↑ − na↓Þ, Sþa ¼ c†a↑ca↓, S

−
a ¼ c†a↓ca↑.

The effective exchange interaction is ferromagnetic

Jab ¼ 2Uχabab ¼ 2U
X
i

jϕiaj2jϕibj2: ð4Þ

In Eq. (3) we have omitted the term U
P

a χ
aa
aana↑na↓. Since

there is no direct hopping between the Anderson states,
na↑na↓ remains frozen.
In order to test the approximate equation (4), we consider

N ¼ 2 electrons with opposite spins, located at sites j
and jþ d. We evaluate the spin-oscillation frequency, ω2,
directly from results for the Hubbard model; see Fig. 1(a).
For the same set of εi, we then identify Anderson states
a, b that maximize jϕjaj2 and jϕjþdbj2, respectively. This
enables the calculation of Jab from Eq. (4) that should lead
to spin oscillations hSzj;li ¼ � 1

2
cosðJabtÞ. Figures 1(c) and

1(d) show correlations between ω2 and Jab for various
realizations of disorder and various distances d between
the electrons. One finds that indeed ω2 ≃ Jab for strong
disorder W ≫ 1 and d ≫ 1.
For a low density of carriers and a larger disorder, the

maxima of the occupied Anderson states a and b are
typically separated by xab > ξ, exceeding the single-
particle localization length, ξ. Then, one obtains an
approximate relation

Jab ≃ 2U expð−xab=λÞ; λ ∼ ξ: ð5Þ

The squeezed spin model.—Assuming that charges are
frozen to the initial occupations ni ¼ 0, 1, 2, it is evident
that the effective spin model (3) acts only on singly
occupied sites with ni ¼ 1. The spin dynamics of the
Hubbard model at high temperatures T ≫ W, U can be
then studied by first randomly positioning N electrons on L
sites. This allows us to establish the distribution of
distances between the singly occupied sites as well as
the distribution of the effective Jab, using Eq. (4) or its
simplified version, Eq. (5). Because of the exponential
decay of Jab, we consider only couplings between
the neighboring singly occupied sites. The effective
Heisenberg model on a squeezed chain then reads

HH ¼ −
X
i

JiS⃗i · S⃗iþ1; ð6Þ

where the summation is carried out over singly occupied
sites ni ¼ 1, i ∈ f1;…; Ñgwith Ñ ≤ N. Note that at infinite
temperature, the average lattice spacing in the effective
model equals d ¼ L=Ñ ¼ ðn̄ − n̄2=2Þ−1, where n̄ ¼ N=L is
the average filling in the original Hubbard model.
In order to establish the probability distribution of Ji,

we first consider a section of length L ≫ 1, where we
randomly choose the continuous positions of Ñ ¼ L=d
points. The probability density for the distances between
the neighboring points is fdðxÞ ¼ ð1=dÞ expð−x=dÞ.
Although the latter result has formally been obtained for
continuous positions of points, it should hold true also for
discrete positions of singly occupied sites provided that
d ≫ 1. Using this result, one may find the probability
density for the random exchange interaction fJðJÞ. To this

(a) (b)

(c) (d)

FIG. 1. Two electrons on the disordered Hubbard chain. (a),
(b) hSzi iðtÞ and hniiðtÞ for a single initial state and single
realization of disorder. (c),(d) Frequency ω2 of spin oscillation
obtained directly from the Hubbard model [see panel (a)]
compared with Eq. (4). The distance between electrons is fixed
at d ¼ 4 (c) and d ¼ 6 (d).
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end, we use Eq. (5) and compare the cumulative distribu-
tion functions

Z
y

0

dx
1

d
exp

�
−
x
d

�
¼

Z
2U

2U expð−y=λÞ
dJfJðJÞ: ð7Þ

Taking the derivative of Eq. (7) with respect to y and
introducing the dimensionless interaction J̃ ¼ J=2U, one
gets

fJ̃ðJ̃Þ ¼ λ̃J̃λ̃−1; λ̃ ¼ λ=d: ð8Þ

Since the latter distribution was derived from Eq. (5), it
holds for λ=d ≪ 1. It is clear that the interaction U sets the
energy scale (and the time scale) of the effective model,
whereas the qualitative spin dynamics depends on the ratio
between the effective localization length λ and the inter-
particle distance d. The important message is that for low
doping (d≫1) and strong disorder (λ∼1) one obtains λ̃≪1

with the distribution of J̃ being singular at J̃ ¼ 0. Still,
limδ→0þ

R
δ
0 dJ̃fJ̃ðJ̃Þ ¼ 0; hence the probability for cutting

the Heisenberg chain into disconnected subchains is van-
ishingly small. Note that singularity in Eq. (8) is integrable
for λ̃ > 0.
In order to test the accuracy of Eq. (8), we have also

numerically generated the distribution of J̃ ¼ Jab=2U
directly from Eq. (4), in the same way as discussed for
the N ¼ 2 case. The positions of the two electrons l and j
have been randomly chosen in such a way that the distance
x ¼ jl − jj is distributed according to fdðxÞ for various d.
The numerical results for W ¼ 4 and 8 are shown in
Figs. 2(a) and 2(b), respectively. These results have been
fitted by Eq. (8), whereby we adjusted a single parameter λ
for all values of d. We have obtained λ ≃ 0.75 and λ ≃ 0.4
for W ¼ 4 and W ¼ 8, respectively. Although Eq. (8) has
been derived for d ≫ 1, it turns out to remain qualitatively
valid also for d ¼ 2, i.e., for the average distance between
singly occupied sites in the half-filled Hubbard model. We
conclude that Eq. (8) accurately describes fJ̃ðJ̃Þ at least for
small J̃, i.e., in the regime that is essential for the long-time
spin dynamics.
Local spin correlations.—We first calculate the time-

dependent local spin correlations at infinite temperature,

SLðtÞ ¼ hSziSzi ðtÞi ¼
1

Tr 1
hTr½Szi ðtÞSzi �idis; ð9Þ

where the spin evolution is determined by the effectiveHH.
We take the random interaction Ji ¼ J̃ as given by Eq. (8);
i.e., we express time in units of 1=2U. The term h…idis
means averaging over various realizations of Ji, and we use
at least 2000 disorder samples.
Figures 2(c) and 2(d) show SLðtÞ. For longer times and

λ̃ < 1, one observes power-law decay SLðtÞ ∝ ð2UtÞ−α

with α < 1=2; hence, the spin dynamics is clearly sub-
diffusive. In Fig. 3(a) we demonstrate α obtained from
fitting numerical results by SLðtÞ ∝ t−α in the time window
t ∈ ½10; 50�. The main message coming from these studies
is that α > 0 for arbitrary nonzero λ̃ > 0, i.e., for arbitrary
nonzero filling. For λ̃ ≪ 1 we obtain the exponent α ≃ λ̃.
Still, it should be noted that the distribution (8) is singular
only for λ̃ < 1, which should be the regime of subdiffusion.
For λ̃ ≪ 1 the finite size effects are negligible [Fig. 2(c)]
but become significant for larger λ̃, Fig. 2(d). Nevertheless,
for the regime with λ̃ ≃ 1 (relevant for larger filling n̄ ∼ 1
and/or weaker disorder), our results shown in Fig. 2(d) are
consistent with normal spin diffusion with α ¼ 1=2, which
is also expected in the weakly disordered Hubbard model.
Results in Figs. 2(c), 2(d), and 3(a) support the scenario
that the spin excitations spread subdiffusively due to the
singular distribution of random exchange interactions,
Eq. (8).
Single weak-link scenario.—To explain the relation of

the subdiffusive dynamics and the singular distribution of
J̃i, we consider a single spin excitation and estimate the
time t in which the excitation spreads over M sites in
the effective Heisenberg chain. We assume the weak-link
scenario, in which the long time dynamics is governed by
rare regions with the smallest Ji. A similar approach has
been used to describe the subdiffusive transport of spinless

(a) (b)

(c)

(d)

FIG. 2. Points in (a),(b) show J̃fJ̃ðJ̃Þ, generated directly from
Eq. (4) for N ¼ 2 electrons at the average distance d, whereby
results have been fitted to Eq. (8) by adjusting a single λ (for all
d). (c),(d) Local spin correlation function [Eq. (9)] for the
effective model with various numbers of spins Ñ. The results
for t ∈ ½10; 50� with the largest Ñ are fitted by SLðtÞ ∝ t−α shown
as the dashed line.
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particles in the vicinity of the MBL transition [5,50,65,66]
or in quasiperiodic potential [67]. Here, we assume that
t ∼ 1=ð2UJ̃mÞ, where J̃m is the weakest exchange out of J̃i
for i ¼ 1;…;M. The probability that each random J̃i is
larger than J̃0 is

�Z
1

J̃0

dJ̃fJ̃ðJ̃Þ
�

M
¼

Z
1

J̃0

dJ̃mfmðJ̃mÞ; ð10Þ

where fmðJ̃mÞ is the probability density for the smallest
interaction. Using Eq. (8) and calculating the derivative of
Eq. (10) with respect to J̃0, one finds the distribution
function fmðJ̃0Þ ¼ λ̃MJ̃λ̃−10 ð1 − J̃λ̃0ÞM−1. Then, the expect-
ation value of the smallest exchange interaction out of M
random J̃i reads

hJ̃mi ¼
Z

1

0

dJ̃mfmðJ̃mÞJ̃m ≃ Γ
�
1þ 1

λ̃

�
M−1=λ̃; ð11Þ

where we have used formulas for asymptotics atM ≫ 1=λ̃.
So we find the relation between the spread of the spin
excitations Λ and t as

Λ ∼Md ∝ ð2UtÞλ̃; SLðtÞ ∝ M−1 ∝ ð2UtÞ−λ̃: ð12Þ

The exponent α ¼ λ̃ is the same as that previously obtained
from numerical studies of the effective Heisenberg model
for λ̃ ≪ 1.
Multiple weak-link scenario.—The simple single-weak

link scenario breaks down for λ̃ ∼ 1, where α ≃ λ̃=2 instead
of λ̃, as shown in Fig. 2(d). As a more general explanation
for the subdiffusive transport, we consider distribution of
effective hopping times between neighboring sites in the
squeezed spin model. The relevant dimensionless quantity
is τ ¼ 1=J̃. Using Eq. (8), one finds the probability density
fτðτÞ ¼ λ̃=τλ̃þ1. For such a broad distribution of hopping
times in a classicalmodel of random traps [68,69], one gets
subdiffusive transport Λ ∝ ð2UtÞα where α ¼ λ̃=ð1þ λ̃Þ
for λ̃ < 1. In the latter model, a classical particle may hop
between neighboring traps in time τ. The hopping time τ
is randomly chosen for each site, but it remains the same
for each visit of the same site. This simple model quite
accurately reproduces the dynamical exponent α for arbi-
trary λ̃, as shown in Fig. 3(a), whereas for λ̃ ≪ 1 it gives the
same relation as the single weak-link scenario. For λ̃ ≪ 1,
the transport (in both scenarios) is governed by the weakest
links. However, in order to describe the entire subdiffusive
regime, one should go beyond the single weak-link picture
and also account for other links.
Comparison with the Hubbard model.—Finally, we

compare our analytical predictions with numerical results
obtained directly for the Hubbard model. The time-
dependent local spin correlation function SLðtÞ at infinite

temperature has been obtained using the microcanonical
Lanczos method (MCLM) [70,71] (in analogy to the
imbalance correlations presented previously [52]) for the
Hubbard model with L ¼ 18 and N ¼ 6; i.e., d ≃ 3.5.
The results are shown in Figs. 3(b) and 3(c) together
with the analytical prediction, SLðtÞ∝ð2UtÞ−α with α¼
λ=ðλþdÞ and λ obtained from fits in Fig. 2(b). Despite
significant finite size effects, one observes that the latter
estimate correctly describes the subdiffusive spin dynamics
in the Hubbard model at low filling n̄ ≪ 1. In particular,
exponent α obtained directly from the Hubbard model
weakly depends on U.
Moreover, one can consider thevalidity of the subdiffusion

scenario in the full Hubbard model beyond the limit of low
filling. It has previously been found that spins reveal a
subdiffusive dynamics even for n̄ ¼ 1 [52]. We therefore
analyze the MCLM results for SLðtÞ ∝ t−α considering
various system sizes L ¼ 14, 16, 18 and various numbers
of electrons N. For the time window t ∈ ½1; 10�, we extract
the dynamical exponent α and comparewith α ¼ λ=ðλþ dÞ,
as shown in Fig. 3(d). Our approach works even up to n̄ ¼ 1
since the average distance between singly occupied sites
d ≥ 2, while λ < 1 provided that the disorder is sufficiently
strong. In particular, forW ¼ 8 and n̄ ≤ 1, we have estimated
that λ̃≲ 0.2.
Conclusions.—In this Letter, we presented an explan-

ation for the anomalous spin dynamics in a 1D Hubbard
model with large potential disorder in the regime of partial

(b)

(c)

(a)

(d)

FIG. 3. (a) Dynamical exponent α vs λ̃ obtained for the
squeezed model. (b),(c) Spin-spin correlation function obtained
for the Hubbard model (L ¼ 18, N ¼ 6) and compared with t−α

(dashed line), where α ¼ λ=ðλþ dÞ. (d) α in the Hubbard model
(U ¼ 2, W ¼ 8, various N and L). λ in (b)–(d) is obtained from
fits in Fig. 2(b).
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MBL, where the charge dynamics appears to be frozen
whereas spins exhibit ergodic but subdiffusive transport
[52]. We have derived an effective isotropic Heisenberg
model with random exchange interactions between neigh-
boring singly occupied sites Ji. Our derivation is formally
best applicable to the regime of low filling, n̄ ≪ 1, and
strong disorder. The main origin of the subdiffusive
behavior then appears to be the singular distribution of
the effective exchange interaction Ji with the crucial
parameter λ̃ ¼ λ=d representing the ratio of the single-
particle Anderson localization length and the average
distance between singly occupied sites. Results for the
Hubbard model reveal that such a scenario seems to remain
qualitatively valid beyond the considered limits of low
filling, even at n̄ ¼ 1, provided that the disorder is
sufficiently strong. It appears that there is no threshold
filling n̄c, below which spins would also become localized
and full MBL would prevail.
There are still questions concerning the dynamics within

the disordered Hubbard model, also being relevant to cold-
atomexperiments onMBL [14,48–50].Our derivation of the
effectivemodel remains on the level of spin dynamics, while
charge degrees are assumed to be frozen. It is evident that
higher order terms in the Anderson basis, following from
Eq. (2), would also lead to the dynamical coupling between
charge and spin degrees of freedom. Since the spin dynamics
is ergodic, it is not excluded that charges would also
eventually delocalize, but then on much larger time scales.
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