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The valley can serve as a new degree of freedom in the manipulation of particles or waves in condensed
matter physics, whereas systems containing combinations of gain and loss elements constitute rich building
units that can mimic non-Hermitian properties. By introducing gain and loss in artificial acoustic boron
nitride, we show that the acoustic valley states and the valley-projected edge states display exotic behaviors
in that they sustain either attenuated or amplified wave propagation. Our findings show how
non-Hermiticity introduces a mechanism in tuning topological protected valley transports, which may
have significance in advanced wave control for sensing and communication applications.
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The discrete valley degree of freedom, which can be
viewed as pseudospin, attracts a lot of attention in the
community of condensed matter physics. Thanks to the
large separation between the valleys in momentum space,
the intervalley scattering occurs scarcely, thus providing a
solid candidate for a new type of information carrier and
processor. Many exciting phenomena, such as valley
polarized currents [1–9], valley filters [10–13], and valley
Hall effects [14–18] have been theoretically predicted and
experimentally observed. Moreover, bulk valley trans-
port, such as the notable vortex nature of eigenstates
[19], valley-selective excitation [20], and chirality-locked
beam splitting behavior [21], have also been unveiled.
Meanwhile, the topological valley-projected edge states
(VPESs), which are immune to lattice imperfections, have
also been extensively reported in optics [22–31] and
acoustics systems [32–38].
Parity-time (PT) symmetric structures [39–42] are sys-

tems composed of complex potentials, which are neither
parity (P) symmetric nor time (T) reversal symmetric alone
but are symmetric after the combined operations of P
inversion and T reversal. The eigenvalues of the PT
symmetric Hamiltonian can be found to be real, despite
the non-Hermitian nature of the system. However, when
entering the PT broken phase, many intriguing approaches
have laid the foundation to realize one-way propagation of
optical waves [43–49] or acoustic waves [50–55]. In
particular, recent experiments comprising non-Hermitian
acoustic structures presented a new route for sound wave
manipulation by cleverly combing gain and loss units
[52–55].
In this Letter, we introduce gain and loss into phononic

crystals that sustain acoustic valleys where the aim is to
investigate the effect of non-Hermiticity on the valley

transport. In order to design such a non-Hermitian pho-
nonic crystal, we engineer artificial acoustic boron nitride
(ABN) with spatially alternating gain and loss located,
respectively, at two sublattices. In the realization of ABN,
gain or loss is modeled by introducing complex mass
densities. The non-Hermitian ingredients are provided by
setting up a complex mass density, which has been shown
to be feasible in practice [50,52]. However, we like to stress
that engineering non-Hermitian acoustic properties is
possible also by utilizing a complex bulk modulus in active
practical systems [56]. The complex band structures and
the propagation of the obstacle-immune edge states have all
been computed with COMSOL Multiphysics.
Artificial ABN possesses a hexagonal lattice structure

consisting of fluid cylinders A (black) and B (white) placed,
respectively, at the two sublattices in air, as illustrated in
Fig. 1(a) [58]. The acoustic parameters for air are the bulk
modulus κ0 ¼ 1.4 × 105 Pa and the mass density ρ0 ¼
1.21 kg=m3. For cylinder A, which has a radius of rA ¼
0.35a0 (a0 is the nearest distance between A and B), the
bulk modulus κA ¼ 0.135κ0, and the mass density ρA ¼
ð1 − γiÞρ0, where γ is the controlling factor describing the
gain (when negative) or loss (when positive) in A; For
cylinder B, rB ¼ 0.30a0, κB ¼ 0.135κ0, and ρB ¼
ð1þ nγiÞρ0, with nγ controlling the amount of gain or
loss in B. Throughout this Letter, n ¼ 1.4 is taken. Since n
is larger than 1, while the cylinder radius of B is smaller
than in A, the gain and loss in A and B are approximately
balanced. The lattice constant of the ABN structure
is a ¼ ffiffiffi

3
p

a0.
Given, for example, γ ¼ 0.01, we calculate the complex

band structure of ABN as shown in Fig. 1(b). For the real
part of the complex band structure, the solid lines, we can
see that there is an omnidirectional band gap between the
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first and second bands, where the extrema, located at K
(i.e., K1 and K2) and K0 (not shown), are called valleys.
From the imaginary part, the dashed lines, we can see that
the valley state at K (or K0) has maximal attenuation or
amplification as the imaginary part is extremal at K (or K0).
Specifically, the valley state K1 at the first band is an
attenuating state as the imaginary frequency is positive
while the valley state K2 at the second band is an
amplifying state as the imaginary frequency is negative.
The properties of the valley states K0

1 and K0
2 at K

0 can be
deduced similarly.
Figure 1(c) shows the valley states K1 (bottom panels)

and K2 (top panels), in which the left panels illustrate the
computed phase ϕðrÞ, whereas the right panels represent
the amplitude jpðrÞj. At point P (with threefold rotational
symmetry C3), the pressure amplitudes vanish and the
phases become singular. Surrounding P, there are flux
vortices in both K1 and K2 states; however, the vortex is
anticlockwise in the K1 state (with charge of þ1) but

clockwise in the K2 state (with charge of −1). As can be
seen, for the K1 state, the amplitude maximum is inside
cylinder A, which is a loss medium, while for the K2 state
the amplitude maximum is inside cylinder B, which is a
gain medium, thus explaining why K1 is an attenuating
state and K2 is an amplifying state.
As the K1 or K2 state carry a valley vortex with charge

þ1 or −1, we can use a chiral point source with topological
charge þ1 or −1, to excite the K1 or K2 state, respectively.
To demonstrate that, we put such chiral source at the center
of a triangle shaped ABN crystal with three surfaces
oriented to the ΓM directions. As shown in Fig. 2, the
valley states (K1 and K2) hosted by the ABN triangle are
indeed excited. The sign of γ determines whether a lattice
site contains gain or loss. The attenuation-free scenario
(γ ¼ 0) predicts an almost entirely symmetric intensity
profile between the K1 and K2 states. However, dependent
on the sign of�γ, K1;2 represent either an attenuating or an
amplifying state. The intensities versus γ for both the states
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FIG. 1. (a) Top panel, schematic of artificial ABN consisting of cylinders A and B in air, P is indicating the position with C3 symmetry.
Bottom panel: the corresponding FBZ. (b) The complex band structure of ABN with gain and loss factor γ ¼ 0.01. The real part (solid
line) and imaginary part (dash line) of the frequency are plotted separately. The red lines represent the upper band, while the blue lines
represent the lower band. (c) Phase and amplitude distributions for valley states K1 and K2. The arrows in the right panels represent the
corresponding time averaged Poynting vectors.
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FIG. 2. The excitation of the valley states K1 and K2 by a chiral source of topological charge m ¼ 1 and m ¼ −1, respectively,
positioned in the center of the triangle-shaped sample for varying γ. The frequencies of the excitation source are the same as the real parts
of the complex frequency of the states K1 and K2, respectively. Right panels: The black dots represent the intensity of the excited states,
normalized by the intensity at γ ¼ 0. The black dashed lines are fitted to an exponential function.
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are given in the right panels of Fig. 2, which fit the
exponential function as expected.
If we interchange cylinders A and B in the artificial ABN

structure, we get a new system that is mirror symmetric to
the original one with reference to the horizontal plane
through point P [see Fig. 1(a)]. This mirror symmetric
ABN structure has exactly the same band diagram as the
original one but the band gap is inverted. That is to say, in
the new ABN crystal, the K1 state carries a vortex of charge−1 while the K2 state carries a vortex of charge þ1, the
valley states get inverted compared to the original ABN
crystal. However, what prevails in this scenario is that K1

still is an attenuating state while the K2 state remains
responsible for wave amplification.
As it has been demonstrated [38], the VPESs can exist at

the interface between two phononic crystals of inverted
bands. Naturally, we could expect the existence of the
VPESs along the interface of the original and the new ABN
crystal. But what is the effect of non-Hermiticity, and what
influence does the introduction of gain and loss have on the
edge states? To answer these questions, we consider a
heterostructure consisting of the original ABN crystal in

area I and the new ABN crystal in area II, as shown in
Fig. 3(a). By applying periodic boundary conditions on
both the horizontal and the vertical interface (with the
period of 46 layers in I and 42 layers in II), and calculating
the dispersion relation along the x direction for the structure
with γ ¼ 0.1, the edge states at both the A and B interfaces
(i.e., ΓK direction of the ABN lattice) can be obtained
simultaneously, as shown in Figs. 3(b) and 3(c), where (b)
and (c), respectively, depict the real and imaginary parts of
the band structure. Blue lines show the dispersion of the
non-Hermitian VPESs along the A interface, while red lines
represent the states along the B interface. It can be seen
from Fig. 3(b) that we obtain pairs of counterpropagating
VPESs along each interface, locked, respectively, to the K
and K0 valleys. In detail, at the A interface, the VPESs,
traveling along the þx direction ϕþ

A are locked to valley K,
while the VPESs, traveling along the −x direction ϕ−

A are
locked to K0; however, at the B interface, the VPESs,
traveling along the þx direction ϕþ

B are locked to K0, while
the VPESs, traveling along the −x direction ϕþ

B are locked
to K. This distinct selection rule shows how valley-
polarized interface states are projected from a specific
valley and into a given direction, beyond which the non-
Hermitian ingredients add an additional degree of freedom.
If we take a close look at the imaginary parts of the
dispersion curve as shown in Fig. 3(c), we immediately see,
for the present case with γ ¼ 0.1, that the VPESs along the
A interface, with positive imaginary frequencies are attenu-
ating modes, while those along the B interface, with
negative imaginary frequency, are amplifying modes. It
is easy to imagine that if we change the sign to γ ¼ −0.1,
according to symmetry, the real parts of the VPES spectrum
at both the interfaces would remain unchanged, but the
imaginary frequencies of the VPESs along the two inter-
faces would swap. It means that for the case with γ ¼ −0.1,
the VPESs along the A interface would become amplifying
modes while those at the B interface, attenuating modes.
In what follows, we focus on the observation of excited

VPESs propagating along these non-Hermitian ABN inter-
faces. As the VPESs on the A interface are antisymmetric
and difficult to excite by a normally incident beam [38], here
we solely exemplify the excitation of the symmetric VPESs
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FIG. 3. (a) Heterostructure consisting of the original ABN
crystal in area I, and the mirror-symmetric ABN crystal in area II
with two distinct horizontal interfaces. (b) and (c) The real
and imaginary parts of the band diagram for the heterostru-
cture shown in (a) with γ ¼ 0.1 are plotted. Blue and red solid
lines indicate the VPESs on the upper and lower interfaces,
respectively.
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FIG. 4. Simulations of the acoustic fields of a Gaussian beam that is normally incident onto the sample consisting of ABN in area I,
and mirror-symmetric ABN in area II, which are separated by a horizontal interface. Here the normalized frequency is 0.344 and we vary
γ from −0.1 to 0.1. Right panel: normalized intensity versus γ, where the black dots from the simulations are fitted to an exponential
function (dashed lines).
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along theB interface, as shown in Fig. 4.We can see that, for
various values of γ, the VPESs can always be excited, where
for negative values of γ, theVPESs are attenuating, while for
positive values, the VPESs start to amplify along the
interface in full consistency to the above discussions.
The VPESs along the interface between two ABN

structures of inverted bands are unique: on the one hand,
they are valley locked as has been mentioned, and on the
other hand, they have the one-way propagation feature based
on the absence of intervalley scattering thanks to their large
separation in momentum space. Therefore, these edge states
are immune to lattice imperfections such as defect that may
be placed along the path of propagation. To demonstrate the
one-way propagation robustness of the non-Hermitian
VPESs, we simulate a Gaussian beam that is normally
incident onto the samplewith aZ-shaped interface at various
values of γ, as shown in Fig. 5. We see that the acoustic
waves travel smoothly along the curved path without being
scattered back around the two sharp corners (60°). But for
negative values of γ, the intensity through the path attenuates
because themode for this particular case is a lossy one,while
for positive values of γ, the intensity grows since the mode
now turns to be an amplifying one. As shown in the right
panel of Fig. 5, the normalized intensity shows an expo-
nential growth with increasing value of γ. It indicates that
either attenuation or amplification of the obstacle-immune
VPESs can be engineered through adjusting the gain or loss
factor γ in non-Hermitian artificial ABN, for which PT
symmetry is always broken [56].
In conclusion, we have studied valley states and valley-

projected edge states in non-Hermitian acoustic boron
nitride. Depending on the gain and loss factor in the
system, the valley states and valley-projected edge states
can be adjusted to be either attenuating or amplifying,
however, always in the absence of a PT symmetry-breaking
transition. Our findings have the potential to pave the way
for exploring intensity-controllable valley transport in
various classical but non-Hermitian systems, which could
push forward advanced wave control for sensing and
communication applications.
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