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We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously
develops from turbulently generated internal waves. We consider a minimal physical model where the fluid
self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by
turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales
much longer than the waves’ period. Our results demonstrate for the first time that the three-scale dynamics
due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and
geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence
is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays
a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of
the turbulent motions.
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An outstanding question in fluid dynamics is whether
large-scale flows can be accurately captured in reduced
models that do not resolve fluid motions on small spatio-
temporal scales. Reduced models are necessary in many
fields of fluid mechanics, since fluid phenomena often
occur on a wide range of spatial and temporal scales,
preventing exploration via direct numerical simulations
(DNSs) of the Navier-Stokes equations. This question is of
interest to, for instance, the turbulence community, which
has developed closure models in large-eddy simulations
and Reynolds-averaged Navier-Stokes simulations [1], the
statistical physics and geophysics communities, who aim to
describe the self-organization and large-scale behavior of
turbulent flows [2–5], and atmospheric and oceanographic
scientists, whose goals are to provide long-time predictions
of the evolution of our climate using weather-ocean models
with coarse resolution [6,7].
A drastic approximation would be to assume that large-

scale flows and small-scale motions are dynamically
decoupled, but this is rarely the case. A number of
important slow large-scale flows are controlled by rapid
processes at the small scales. For instance, the 22-yr cycle
of solar magnetism is driven by the Sun’s convective
interior, which evolves on month-long or shorter timescales
[8,9]; upwelling of the planetary-scale thermohaline cir-
culation of Earth’s oceans hinges on enhanced mixing
events that critically depend on small-scale (∼100 m)
internal waves [10,11]; Jupiter’s zonal jets develop from
small-scale turbulence patterns due to convective heat
transfers in the weather layer and deep interior [12].
The generation of a large-scale flow by turbulent

fluctuations can be studied by spatial averaging the

Navier-Stokes equations. Let us consider the case of a
large-scale mean flow ū in the horizontal x direction
perpendicular to downward gravity, with overbar denoting
the horizontal mean. We write ðu0; w0Þ the velocity fluctua-
tions in (x, z) directions with ẑ the upward vertical axis. In
these two dimensions, the horizontal mean of the Navier-
Stokes equation in the x direction reads

∂tū − ν∂zzū ¼ −∂zðw0u0Þ; ð1Þ
with ν the kinematic fluid viscosity. The right-hand side of
(1) is minus the divergence of the Reynolds stress and is the
momentum source or sink for the mean flow. In isotropic
homogeneous turbulence, we do not expect the generation
of a mean flow due to the lack of symmetry breaking.
However, any inhomogeneity or anisotropy of the fluctua-
tions can initiate a slowly varying mean flow, whose fate
depends on its interaction with the fluctuations [4]. The
parametrization of the Reynolds stress ðw0u0Þ for unre-
solved scales is the key ingredient in all reduced models.
Generally, a closure model expresses the Reynolds stresses
in terms of the resolved variables [1].
In our case of interest, the small-scale fluctuations are

oscillating disturbances of the density field called internal
waves. Internal waves are ubiquitous in oceans [13],
planetary atmospheres [14–17], stars [18,19], brown
dwarves [20], and planetary cores [21]. In the atmosphere,
internal waves actively contribute to the generation of mean
equatorial winds in Earth’s stratosphere, which change
direction roughly every 14 months, coined the quasibien-
nial oscillation (QBO) [22]. Internal waves may also be
involved in the generation of reversing zonal flows on
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Saturn [23] and Jupiter [24], they are of interest for
extrasolar planetary atmospheres [25], and may influence
the differential rotation of stars [26] and slow large-scale
motions of Earth’s magnetic field [27].
Here, we report results of the first DNS of a realistic

slowly reversing mean flow emerging from small-scale
fluctuations in two dimensions, and we unravel the key
physics of the generation mechanism using a hierarchy of
low-order models in which the Reynolds stresses are
approximated. We use the horizontally periodic self-con-
sistent model of convective-stably stratified dynamics of
[28]. The velocity u ¼ ðu; wÞ, temperature T, and density
anomaly ρ ¼ −αT satisfy the Boussinesq equations

∂tuþ ðu ·∇Þuþ∇p ¼ Pr∇2u − Pr Raρẑ − uτ; ð2aÞ

∂tT þ ðu · ∇ÞT ¼ ∇2T; ð2bÞ

∇ · u ¼ 0; ð2cÞ

nondimensionalized with κ (thermal diffusivity) and H
(characteristic height). The fluid is thermally stratified (Tt
and Tb imposed on the top and bottom no-slip boundaries)
and exhibits a buoyancy reversal at the inversion temper-
ature Ti with Tb > Ti > Tt (similar to water, whose density
maximum is at 4 °C [29]). Thus, the fluid spontaneously
organizes into a lower, nearly isothermal convective region
and an upper stably stratified region. Pr ¼ ν=κ and Ra ¼
αsgΔTH3=ðκνÞ are the Prandtl and global Rayleigh

numbers, αs is the expansion coefficient for T > Ti, and
ΔT > 0 is the difference between the dimensional bottom
and inversion temperatures, such that using Ti ¼ 0 as the
dimensionless reference temperature, we have Tb ¼ 1. The
buoyancy reversal is obtained using the nonlinear equation
of state for ρ

ρðTÞ ¼ −αðTÞT ¼
�−T; T ≥ Ti ¼ 0;

ST; T ≤ Ti ¼ 0;
ð3Þ

with S the stiffness parameter [28]. We define the neutral
buoyancy level zNB to be the height at which adiabatic
plumes emitted from the bottom boundary become neu-
trally buoyant. This roughly corresponds to the height of
the convection zone [28,30] or, equivalently, the base of
the stable layer [dashed lines in Figs. 1(a) and 1(b)]. The
normalized domain lengths are Lx ¼ 2 and Lz ¼ 1.5 in the
x and z directions, which leads to an aspect ratio of
the convection at statistical steady state close to 3 for all
simulations; τ¼ 102

ffiffiffi
2

p ftanh½ðz−Lzþ0.15Þ=0.05�þ1g=2
is a z-dependent linear damping used to prevent wave
reflections from the top boundary. We solve equations (2)
via DNS using DEDALUS [31] with Chebyshev polynomials
(Fourier modes) in the z (x) direction. DNSs are run over
several thermal diffusion times in order to allow the system
to reach a statistical equilibrium self-consistently and
obtain several reversals of the mean flow.
Figure 1 shows the main DNS results of the Letter,

obtained for Tt ¼ −43, Tb ¼ 1, Pr ¼ 0.2, Ra ¼ 1.2 × 108,

FIG. 1. DNS results. (a), (b) Snapshots of the vertical velocity field w at times t1 ¼ 2.21 and t2 ¼ 2.24, along with the mean flow ū
(solid line) for z > zNB ¼ 0.68 (with ū ¼ 0 corresponding to x ¼ 1). Vertical velocity patterns show convective motions in the lower
part of the domain (z ≤ zNB) and internal-wave motions in the upper part (z ≥ zNB). Note that energy propagates upward along wave
crests, so crests toward the upper left (right) correspond to retrograde (prograde) waves. (c) The mean flow ūðt; zÞ. The mean flow in the
convective zone corresponds to the average of stochastic plumes emitted from the bottom boundary and hence reverses on a relatively
rapid, convective timescale. In the stably stratified layer, ū results from the nonlinear interaction of internal waves and oscillates on
timescales ∼0.1, much longer than the buoyancy period ∼π10−4. Simulation details and videos are available in Supplemental
Material [33].
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and S ¼ 1=3, such that the convection-wave coupling is
relatively strong and the interface is flexible [28]. With
zNB ¼ 0.68, the effective Rayleigh number is Raeff ¼
z3NBRa ≈ 4 × 107. Snapshots of vertical velocity [Figs. 1(a)
and 1(b)] reveal large convective updrafts and downflows
below zNB and internal waves above. If there was no mean
flow in the stably stratified layer, convection would gen-
erate pro- and retrograde waves with similar amplitude.
However, in Figs. 1(a) and 1(b), the internal waves are
mostly propagating in a single direction, an indication that
the mean flow (shown by the solid line) is filtering waves
going in the opposite direction. The evolution of the mean
flow over one thermal timescale is shown in Fig. 1(c). The
stable layer has a strong mean flow that reverses every
∼0.05 thermal time. Each new mean-flow phase starts near
the top of the domain and descends toward the convective
layer. The mean flow is driven by wave damping at critical
layers and by viscous and thermal dissipation. Critical
layers [32] are ubiquitous in our DNS because convection
generates a broad spectrum of waves, some of which
have low phase velocities. Viscous and thermal dissipation
effects are relatively strong in our DNS, so the basic mean-
flow mechanism is essentially due to wave dissipation.
Previous studies of wave–mean-flow interactions have

focused on momentum deposition by internal waves of a
single frequency and wave number [38,39]. In such cases, it
can be shown analytically that a slowly reversing mean
flow emerges provided that there are both prograde and
retrograde waves, as well as an initial disturbance. The
prograde (respectively, retrograde) wave provides a þx
positive (respectively, negative) acceleration for the mean
flow through damping. Then, the competition of the two
forces (whose intensity depends on the direction of the
mean flow through the Doppler shift) leads to the observed
long-time oscillation of ū [22].
Our results demonstrate for the first time that an

oscillating mean flow can emerge from internal waves
generated by turbulent motions with no control over the
waves (i.e., no parametrization). Importantly, the funda-
mental mechanism that applies for monochromatic waves
also applies for a broadband spectrum of internal waves:
damping and momentum deposition is stronger for
waves going in the same direction as the mean flow.
This is shown in Fig. 1(a), where a strong mean flow in
the positive direction strongly dissipates prograde waves,
such that only retrograde waves can be visible above. The
same is true in Fig. 1(b), but for the case of a negative mean
flow. With a broadband spectrum of waves, whose ampli-
tudes can vary over time due to the chaotic dynamics of
convection, momentum deposition cannot be simply traced
back to a handful of self-interaction terms in the Reynolds
stress that would be coherent over long times. Driving of a
mean flow in this context may be unexpected, but is in fact
generic at sufficiently low Pr: as Fig. 2 shows, the mean
flow becomes stronger and more regular as Pr decreases.

This can be understood from the fact that, while the forcing
through wave damping is only weakly affected by decreas-
ing Pr (because waves are damped through both viscous
and thermal dissipation effects), the mean flow experiences
much less dissipation (it is only damped through viscosity
effects), hence becoming stronger. As a result, wave-driven
flows should emerge relatively easily in low-Prandtl-num-
ber fluids, such as planetary cores made of liquid metal and
stellar interiors [40,41], potentially affecting planetary and
stellar dynamos [42] and magnetic reversals [43,44].
We now compare results of the full DNS model for the

parameters of Fig. 1 (denoted byM1) with results obtained
from two reduced models (M2 and M3), described in
Fig. 3(a). The goal of the reduced models is to reproduce
the evolution of the mean flow without resolving the
convection. M2;3 only solve the dynamics of the stable
layer and are forced by prescribing values for the flow
variables at its base (zNB). If we force with exact time-
varying values of ðu0; w0Þ and T 0 from the full DNS, the
evolution of ū is exactly reproduced in M2 (not shown).
Observations of real systems do not generally provide
information about all variables at sufficient temporal and
spatial resolution over long time periods, so we only use a
subset of the full DNS data to force the reduced models.
Specifically, here we expand the fluctuations u0, w0, T 0 in
M2;3 in series of linear internal-wave modes, and we set
their amplitudes such that the kinetic energy of each wave
mode (defined by each wave’s frequency ω and wave
number k) matches the kinetic energy spectrum Kðω; kÞ
obtained in the full DNS at zNB. Note that we could have set
the shape of the internal-wave spectrum using theoretical
predictions for the wave generation by turbulent convection
[45,46], but that would preclude a comparison to M1,
whose wave spectrum differs from, e.g., [45,46].
The reduced models only differ in how wave propagation

away from the bottom boundary is solved. In M2, wave
propagation is solved exactly by DNS of the Boussinesq
equations, while in M3, a closed-form solution for the
Reynolds stress is derived such that we only solve the 1D
mean flow equation (1). The analytical solution for the
fluctuations ðu0; w0Þ in M3 is obtained through WKB

FIG. 2. Mean-flow rms ūrms as a function of Pr. The mean flow
becomes stronger as Pr decreases and is also more regular: the
symbols’ area is inversely proportional to the frequency band-
width of ū, defined as the difference Δf ¼ f0.9 − f0.1 of the two
frequencies f0.1 and f0.9 below and above which lies 10% of the
mean-flow energy.
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approximation, neglecting nonlinear wave-wave terms,
mean-flow acceleration, and cross-interaction terms in
the Reynolds stress (cf. details in the Supplemental
Material [33]). We note that, while M2 is computationally
cheaper than M1 (resolution is 8 times smaller and time
steps are ∼3 times larger), it remains significantly more
demanding than M3, which is the only practical model for
predicting the long-term dynamics of real systems (e.g.,
capturing the QBO in General Circulation Models). The
goal of M2 is to check approximations made in M3.
Figure 3(b) shows the temporal variations of the mean

flow ū obtained in full DNS M1 and in the two reduced
modelsM2 andM3. A large-scale oscillation is obtained in
all three models, but the mean flow is stronger and the
period is longer in the reduced models than in full DNS. Let
us consider the characteristic amplitude of the mean flow
by its rms (ūrms) and the characteristic period by taking the
inverse of the peak frequency of its Fourier transform (Tū),
which we average vertically between z ¼ 0.8 and 1.1. We
have ūrms ¼ 179 (M1), 370 (M2), and 415 (M3), Tū ¼
0.125 (M1), ≈0.33 (M2), and ≈0.33 (M3). Clearly, even
when the wave propagation is solved exactly by DNS (M2),
the mean-flow dynamics is not reproduced quantitatively.
In addition, some of the temporal variability of the mean
flow obtained in full DNS is lacking in both reduced
models.
The large discrepancy between the reduced models and

DNS comes from the assumption that fluctuations on the

lower boundary z ¼ zNB ofM2;3 can be reconstructed from
the time-averaged spectrum K using the linear wave
relations for upward propagating plane waves. However,
K can include contributions from overshooting plumes and
some of the waves may be nonlinear. In our M1 (M2)
simulations, the nonlinear terms have a typical magnitude
of approximately 50% (10%) of the linear terms just above
zNB, suggesting overshooting convection in M1 may be
non-negligible at the interface. However, in the bulk of the
stable region, this decreases to about 10% (5%), so the
waves are in a weakly nonlinear regime (cf. details in
the Supplemental Material [33]). Because the waves are
weakly nonlinear, the energy transfer among waves does
not affect the mean flow, explaining the agreement between
M2 and M3. Because forcing using the spectrum higher
than zNB could in principle attenuate contributions from
nonlinear convective motions, we have run additional
simulations with different forcing heights (cf. Fig. S2 of
the Supplemental Material [33]): quantitative changes for
the mean flow are obtained, but never lead to agreement
with full DNS results. Importantly, the reconstruction of
wave fluctuations from an energy spectrum neglects high-
order statistics (higher than 2), so statistics in the reduced
models are Gaussian. However, intermittent events exist
near the interface because the convection does not have a
top-down symmetry and exhibits non-Gaussian statistics.
In fact, the kurtosis of the fluctuations remains large, even
in the wave field far from the interface zNB (see Fig. S3 of

FIG. 3. (a) Schematics of the DNS modelM1 and the two reduced modelsM2 andM3. (1) We calculate the kinetic energy spectrumK
of the fluctuations at height zNB obtained inM1. (2) The forcing (u0, w0, T 0) is derived fromK, assuming that the fluctuations correspond
to linear propagating internal waves. Propagation of the waves is solved (3) via DNS of the Boussinesq equations inM2, but is derived
analytically (4) in M3 under WKB approximation. Thus, inM3 (5), we only need to solve for the mean-flow equation. As in full DNS,
we use a damping layer for 1.35 < z < 1.5, and boundary conditions for the mean flow are no slip. (b) ū over one thermal time obtained
for each model shown in (a). Physical parameters are as in Fig. 1. Note that the colormap has been changed in Fig. 3(b) compared to
Fig. 1(c) to highlight differences between M1 and M2;3.
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the Supplemental Material [33]), suggesting that intermit-
tency is a key component of wave generation. Intermittent
intense wave events found in our DNS but neglected in the
reduced models are typical of real systems. In the
Atmosphere, for instance, atmospheric waves sometimes
propagate in the form of localized wave packets [47], such
that wave intermittency can be non-negligible and has to be
incorporated in reduced mean-flow models using stochastic
processes [48].
In conclusion, the spontaneous generation and oscillation

of a mean flow in our minimal, physical model is obtained
for a wide range of parameters. In particular, we find that the
mean flow becomes stronger as Pr decreases (Fig. 2), which
highlights the necessity to account for the real value of Pr in
stellar and planetary dynamical models. Evaluating the
impact of wave-driven flows in natural systems is challeng-
ing. Indeed, we have shown here that reducedmodels do not
yet predict the correct physics: tackling simultaneously the
three-scale dynamics due to turbulence, waves, and mean
flow seems necessary. A major source of errors in reduced
models comes from the approximations made in the types of
waves excited by convection, even if the stably stratified
layer is forced with waves with the same kinetic energy
spectrum as in full DNS. Our analysis suggests that
implementing wave intermittency (through a boundary
forcing scheme that would match the high-order moments
of the DNS statistics) and disentangling nonwave contribu-
tions from the source spectrum are the next step forward and
will be essential to improve the long-time predictive
capabilities of low-order models.
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[39] B. Semin, G. Facchini, F. Pétrélis, and S. Fauve, Generation
of a mean flow by an internal wave, Phys. Fluids 28, 096601
(2016).

[40] E. J. Kaplan, N. Schaeffer, J. Vidal, and P. Cardin, Sub-
critical Thermal Convection of Liquid Metals in a Rapidly
Rotating Sphere, Phys. Rev. Lett. 119, 094501 (2017).

[41] E. M. King and J. M. Aurnou, Turbulent convection in
liquid metal with and without rotation, Proc. Natl. Acad.
Sci. U.S.A. 110, 6688 (2013).

[42] L. M. Malyshkin and S. Boldyrev, Magnetic Dynamo
Action at Low Magnetic Prandtl Numbers, Phys. Rev. Lett.
105, 215002 (2010).

[43] V. Carbone, L. Sorriso-Valvo, A. Vecchio, F. Lepreti, P.
Veltri, P. Harabaglia, and I. Guerra, Clustering of Polarity
Reversals of the Geomagnetic Field, Phys. Rev. Lett. 96,
128501 (2006).

[44] R. Benzi and J. F. Pinton, Magnetic Reversals in a Simple
Model of Magnetohydrodynamics, Phys. Rev. Lett. 105,
024501 (2010).

[45] P. Goldreich and P. Kumar, Wave generation by turbulent
convection, Astrophys. J. 363, 694 (1990).

[46] D. Lecoanet and E. Quataert, Internal gravity wave ex-
citation by turbulent convection, Mon. Not. R. Astron. Soc.
430, 2363 (2013).

[47] A. Hertzog, M. J. Alexander, and R. Plougonven, On the
intermittency of gravity wave momentum flux in the
stratosphere, J. Atmos. Sci. 69, 3433 (2012).

[48] F. Lott and L. Guez, A stochastic parameterization of the
gravity waves due to convection and its impact on the
equatorial stratosphere, J. Geophys. Res. 118, 8897
(2013).

PHYSICAL REVIEW LETTERS 120, 244505 (2018)

244505-6

https://doi.org/10.1029/1999RG000073
https://doi.org/10.1038/nature06897
https://doi.org/10.1038/nature06897
https://doi.org/10.1038/354380a0
https://doi.org/10.1088/0004-637X/714/1/904
https://doi.org/10.1088/2041-8205/758/1/L6
https://doi.org/10.1088/2041-8205/758/1/L6
https://doi.org/10.1038/ngeo2859
https://doi.org/10.1038/ngeo2859
https://doi.org/10.1103/PhysRevFluids.2.094804
https://doi.org/10.1088/0169-5983/47/4/045502
https://doi.org/10.1088/0169-5983/47/4/045502
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.1017/S0022112067000515
https://doi.org/10.1017/S0022112067000515
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.244505
https://doi.org/10.1175/1520-0469(1968)025%3C1095:ATOTQB%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034%3C1847:TIOTIW%3E2.0.CO;2
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1175/1520-0469(1978)035%3C1827:TIOAFS%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035%3C1827:TIOAFS%3E2.0.CO;2
https://doi.org/10.1063/1.4962937
https://doi.org/10.1063/1.4962937
https://doi.org/10.1103/PhysRevLett.119.094501
https://doi.org/10.1073/pnas.1217553110
https://doi.org/10.1073/pnas.1217553110
https://doi.org/10.1103/PhysRevLett.105.215002
https://doi.org/10.1103/PhysRevLett.105.215002
https://doi.org/10.1103/PhysRevLett.96.128501
https://doi.org/10.1103/PhysRevLett.96.128501
https://doi.org/10.1103/PhysRevLett.105.024501
https://doi.org/10.1103/PhysRevLett.105.024501
https://doi.org/10.1086/169376
https://doi.org/10.1093/mnras/stt055
https://doi.org/10.1093/mnras/stt055
https://doi.org/10.1175/JAS-D-12-09.1
https://doi.org/10.1002/jgrd.50705
https://doi.org/10.1002/jgrd.50705

