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Interscale interaction between small-scale structures near the wall and large-scale structures away from
the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence.
While the top-down influence from the large- to small-scale structures is well known, it has been unclear
whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show
that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from
the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the
channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales.
Such an “inverse” interscale transport of the Reynolds shear stress eventually supports the turbulent energy
production at large scales.
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In wall-bounded turbulence there exist large-scale vor-
tical structures located away from the wall as well as small-
scale structures in the wall vicinity. The large-scale struc-
tures are located in the logarithmic region or further out and
have streamwise length scales far larger than those of the
near-wall structures (see, for example, Ref. [1] and the
reference therein). These large-scale structures are called
“superstructures” or “very-large-scale motions,” and have
been shown to account for a significant fraction of the total
turbulent kinetic energy and the Reynolds shear stress [2,3].
The role of the large-scale structures becomes increas-

ingly important with increasing Reynolds number in terms
not only of their relative energy content but also of their
interaction with the small-scale structures near the wall.
Although the behavior of the near-wall structures has
conventionally been considered universal when scaled by
viscous units, the observed profiles of, for example, the
turbulent intensities indicate a Reynolds number depend-
ency [4–9]. The top-down influence from the large-scale
structure further away from the wall has been intensively
studied in the past decade and has been shown to affect the
near-wall region [4,6,10–16], and thereby disproves strict
viscous scaling there.
The other intriguing issue is whether the small-scale

structures near the wall also affect the large-scale structures
away from the wall. Iwamoto et al. [17] showed that the
energy production by the mean velocity gradient is indis-
pensable to maintain the large-scale structures, and other
numerical experiments, such as Refs. [18–20], in which the
smooth walls of turbulent channel flow were artificially
replaced with other boundary conditions, demonstrated that
the large-scale structures remain essentially unchanged
irrespective of the flow structures near the wall.
Consistently with this, Hwang and Cossu [21] showed

that the large-scale structures are self-sustainable even in
the absence of the near-wall structures, and linear analysis
also shows that amplified modes similar to the large-scale
structures are found based on the mean flow profile (see,
e.g., Refs. [22–24]). These earlier studies suggest that the
large-scale structures essentially arise due to mean flow
instabilities and are rather independent from the near-wall
structures. On the other hand, Kim and Adrian [25]
proposed that the large-scale structures are caused by
successive mergers and/or growth of near-wall hairpin
vortices. Toh and Itano [26] reported not only the top-
down influence but also a bottom-up influence, i.e., from
the near-wall to the large-scale structures, and concluded an
interaction in “a cosupporting cycle.” However, the details
of the interaction is still unclear.
From the viewpoint of the Reynolds-averaged turbulent

statistics, the effect of such an interaction between the
large- and small-scale structures may be expressed as an
interscale and/or spatial transport of the Reynolds stresses
at different scales. Such “scale-by-scale” analysis on the
Reynolds stress transport is reported by, for example, Lee
andMoser [16,27] andMizuno [28], and the influence from
the large-scale to near-wall structures is observed as a
turbulent energy flux toward the wall. While only the
turbulent kinetic energy transport is investigated in these
studies, the Reynolds shear stress is also an essential
quantity as it is the main (and in streamwise homogeneous
flows the only) Reynolds stress component that appears in
the streamwise mean momentum equation in wall turbu-
lence. Thereby the transport of the Reynolds shear stress is
an essential factor in understanding the structure of wall
turbulence.
In this Letter we analyze the scale-by-scale transport of

the Reynolds shear stress as well as the turbulent kinetic
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energy, and show that the influence from the small scales
near the wall indeed plays a role in maintaining the large-
scale structures away from the wall. Our analysis is based
on an experimental data set of plane Couette turbulence at
some moderate Reynolds numbers from our previous work
[29]. As observed in many earlier studies of turbulent plane
Couette flow (see, e.g., Refs. [30–33]), large-scale vortical
structures exist in the core region of the channel, and in the
present study we focus on their interaction with small-scale
structures.
We consider plane Couette flow where two parallel walls

spatially separated by the distance 2h are translating in
opposite directions with the same speed Uw. The origin of
the coordinates is defined at the channel center and x, y, and
z axes are taken in the streamwise, wall-normal, and
spanwise directions. The Reynolds number is defined as
Re ¼ Uwh=ν, where ν is the kinematic viscosity of the
fluid. Three velocity components were measured by stereo-
scopic particle image velocimetry on the xz plane at
y=h ¼ −0.83;−0.75;−0.67;−0.59;−0.46;−0.23, 0, 0.23,
0.46. The measurements were done for Re ¼ 500, 1000,
1500, and 2000, which correspond to friction Reynolds
numbers Reτ ¼ uτh=ν ¼ 37, 63, 85, and 108, where uτ is
the friction velocity defined as uτ ¼

ffiffiffiffiffiffiffiffiffiffi

τw=ρ
p

based on the
wall shear stress τw and the fluid density ρ. The wall shear
stress was evaluated from the sum of the mean shear and the
Reynolds shear stress as detailed in Ref. [29]. About 300
statistically independent snapshots (separated by about
20 s, which is at least an order of magnitude larger than
the integral timescale of the flow) of instantaneous velocity
fields were obtained at each y position for evaluation of
statistical quantities. Further details of the experiment are
found in Refs. [29,34].
In order to investigate the interscale interaction, we make

a large- or small-scale decomposition of the fluctuating
velocity fields and derive the transport equation of each
corresponding part of the Reynolds stress. The instanta-
neous velocities ũi are split into their mean values Ui ¼
hũii and their deviations ui ¼ ũi −Ui. Here, hi indicates
the averaged quantities in x and z directions and in time.
The deviations ui are further decomposed into a large- and
a small-scale part by spatial filtering based on a spanwise
cutoff wave number kz as ui ¼ u0 þ u00, where superscripts
0 and 00 represent the large- and small-scale part, respec-
tively. Since there is no overlapping wave number range
between them, their cross-correlation is zero, hu0iu00j i ¼
hu00i u0ji ¼ 0, and the Reynolds stress is therefore simply
decomposed into its large- and small-scale parts,
huiuji ¼ hu0iu0ji þ hu00i u00j i. In a similar manner as the
transport equation of the “full” Reynolds stress huiuji is
derived, one can derive those for hu0iu0ii and hu00i u00i i as

Dhu0iu0ji
Dt

¼ PL
ij − εLij þΦL

ij þDν;L
ij þDt;L

ij − Trij; ð1Þ

Dhu00i u00j i
Dt

¼ PS
ij − εSij þΦS

ij þDν;S
ij þDt;S

ij þ Trij; ð2Þ

where PL
ij, ε

L
ij, ΦL

ij, and Dν;L
ij on the right-hand side of

Eq. (1) are the large-scale parts of production, viscous
dissipation, velocity-pressure-gradient correlation, and vis-
cous diffusion terms defined as

PL
ij¼−hu0iu0ki

∂Uj

∂xk − hu0ju0ki
∂Ui

∂xk ; εLij ¼ 2ν

�∂u0i
∂xk

∂u0j
∂xk

�

;

ΦL
ij¼−

1

ρ

��

u0i
∂p0

∂xj
�

þ
�

u0j
∂p0

∂xi
��

; Dν;L
ij ¼ ν

∂2hu0iu0ji
∂x2k ;

and their corresponding small-scale parts in Eq. (2) are
those with the superscripts 0 interchanged by 00. The terms
related with the interaction between the large- and small-
scale part of the velocity field are the turbulent spatial
transport terms,

Dt;L
ij ¼ −

∂
∂xk ðhu

0
iu

0
ju

0
ki þ hu0iu0ju00ki

þhu00i u0ju00ki þ hu0iu00j u00kiÞ; ð3Þ

Dt;S
ij ¼ −

∂
∂xk ðhu

00
i u

00
j u

00
ki þ hu00i u00j u0ki

þhu0iu00j u0ki þ hu00i u0ju0kiÞ; ð4Þ

and the interscale transport term,

Trij ¼ −
�

u00i u
00
k

∂u0j
∂xk

�

−
�

u00j u
00
k
∂u0i
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k
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: ð5Þ

Here, Dt;L
ij and Dt;S

ij represent the spatial redistribution of
hu0iu0ji and hu00i u00j i, respectively, and Trij indicates energy
exchange between them. One can easily see that the sum of
Eqs. (1) and (2) yields the transport equation of the full
Reynolds stress huiuji. An interesting feature of this
formulation is that the first two terms and the others on
the right-hand side of Eq. (5) have different signs and are
similar to the production term, since they are products of
the second moment of velocity fluctuations and velocity
gradients. From the analogy to the Reynolds stress pro-
ductions, one may interpret that the first two terms indicate
the energy transfer from the larger to smaller scales,
whereas the others represent the transfer in the other
direction. It would also be worth mentioning here that
the present formulation Eqs. (1)–(5) is valid not only for the
large- or small-scale decomposition based on the Fourier
modes, but also for any other decompositions that satisfy
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hu0iu00j i ¼ hu00i u0ji ¼ 0, for example, those based on the
proper orthogonal decomposition.
As the filtered Reynolds stresses hu0iu0ji are related to the

Reynolds stress spectra as Eij ¼ ∂hu0iu0ji=∂kz, differentiat-
ing Eq. (1) with respect to kz yields the scale-by-scale
transport equation of the Reynolds stress:

DEij

Dt
¼ prij − ϵij þ ϕij þ dνij þ dtij þ trij; ð6Þ

where the terms on the right-hand side are the derivatives of
the corresponding terms in Eq. (1). These terms except dtij
and trij can be expressed by the Fourier velocity spectra or
velocity-pressure-gradient cospectra and represent the
spectral contribution from each scale to the overall pro-
duction, dissipation, etc. The turbulent spatial transport
dtij ¼ ∂Dt;L

ij =∂kz and the interscale transport trij ¼
−∂Trij=∂kz consist of different combinations of the triad
interactions between the fluctuating velocities and velocity
gradients, and are particularly focused on in the following
analysis. dtij represents spatial redistribution of the
Reynolds stress at each scale: particularly in the present
flow configuration, the integration of dtij across the channel
at a fixed scale kz (or the corresponding λz) is zero for any
scale. On the other hand, the interscale transport Trij
indicates, as seen from Eqs. (1) and (2), flux of the
Reynolds stress from the large- to small-scale part of the
flow field across wave number kz in the Fourier space.
Therefore, the derivative quantities trij ¼ −∂Trij=∂kz re-
present the local gain or loss at kz by such interscale
transport.
Figure 1 presents the space-wavelength (y-λz) diagrams

of the interscale transport of the turbulent kinetic energy
kt ¼ huiuii=2 and the Reynolds shear stress −huvi for
different Reynolds numbers. For the wall-normal location

of the data points the distance from the wall at y=h ¼ −1
scaled by the wall units, ηþ ¼ yuτ=νþ Reτ, is also shown.
It should be noted that for the turbulent kinetic energy
transport Trkt some terms on the right-hand side of Eq. (5)
associated with ∂=∂y cannot be evaluated based on the
present experimental data and therefore are omitted, while
for the Reynolds shear stress transport Tr−uv all terms can
be evaluated since the wall-normal velocity gradients in
Tr−uv are all related with ∂v0=∂y or ∂v00=∂y, which can be
obtained via the continuity equation. As shown in
Figs. 1(a)–1(c), Trkt is generally positive, indicating that
kt is mainly transferred from larger to smaller scales as
considered in the classical view of turbulent energy
cascade. The positive peak is located at relatively small
scales near the wall and its location is shown to move closer
to the wall and also toward smaller scales (with respect to h)
as Re increases.
Saikrishnan et al. [35] reported a net inverse energy

cascade in the buffer layer by their analysis based on a two
point scale energy budget. In the present study, however,
we do not observe such inverse cascade in the correspond-
ing region, but our results are instead in qualitative agree-
ment with Ref. [28]. As we focus on the transport of the
Reynolds shear stress, further investigation on the differ-
ence between such observations is beyond the scope of the
present paper.
As presented in Figs. 1(d)–1(f), Tr−uv shows negative

values in the entire region of the channel, which indicates
that −huvi generally is transferred from smaller to larger
scales in contrast to kt. Such inverse interscale transport of
−huvi is significant in the near-wall region and increases in
magnitude with the Reynolds number. Tr−uv is also shown
to have a negative peak at relatively large scales at the
channel center for Re ≥ 1000, and the location seems rather
unchanged with increasing Re.
The scale-by-scale transport equation (6) is now inves-

tigated for kt and −huvi. Figures 2(a1) and 2(b1) present
the turbulent kinetic energy spectra Ekt and the Reynolds
shear stress cospectra E−uv at the channel center for four
different Reynolds numbers, respectively, and the scale-by-
scale energy gain or loss by their production and interscale
transport is given in Figs. 2(a2) and 2(b2). For all Reynolds
numbers, both the energy spectra Ekt and the cospectra
E−uv have their peaks around λz=h ¼ 3, and the turbulent
energy transport trkt is shown to bring energy from the
large-scale energy-containing range to smaller scales, while
the shear stress transport tr−uv indicates the opposite
tendency. What should be noted here is that the
Reynolds shear stress productions pr−uv have their peaks
at somewhat smaller scales compared to E−uv itself,
although the turbulent energy spectra Ekt and its production
prkt have their peaks at the corresponding wavelengths.
Such a tendency can also be seen in the results in
Refs. [12,36] (see their Figs. 6 and 4, respectively, the
wall-normal velocity spectra correspond to the shear-stress
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FIG. 1. Space-wavelength (y- or η-λz) diagrams of interscale
transport of (a)–(c) the turbulent kinetic energy Trkt and (d)–(f)
the Reynolds shear stress Tr−uv scaled by u3τ=h at (a), (d)
Re ¼ 500, (b), (e) 1000, and (c), (f) 2000. The black dashed
line in each panel indicates the channel center y=h ¼ 0.
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production spectra, as pr−uv ¼ EvvdU=dy). The produc-
tion of −huvi occurs at relatively small scales because of
the distribution of the wall-normal velocity spectra Evv:
unlike the streamwise Reynolds normal stress hu2i, there is
no production of the wall-normal component hv2i, and it
receives energy from hu2i via the pressure-strain redis-
tribution at relatively small scales [27,28].

As clearly shown in Figs. 2(a2) and 2(b2), the turbulent
energy spectra Ekt and the Reynolds shear stress cospectra
E−uv at large scales are mainly generated through produc-
tion by the mean flow, and the contributions by the
interscale transport are small in comparison. This obser-
vation is consistent with earlier studies [17–24], which
suggest that the large-scale structures away from the wall
are essentially free from the influences by the near-wall
structures and mainly generated by the mean flow insta-
bilities. However, the peaks of E−uv are shown to be located
at somewhat larger scales than its production spectra. Such
tendencies cannot only be explained by the local produc-
tion by the mean velocity gradient, and thus imply an effect
by the interscale transport that brings −huvi from small to
large scales.
Figure 3 presents the space-wavelength diagram of the

Reynolds stress cospectra E−uv along with its scale-by-
scale production pr−uv, interscale transport tr−uv, and the
turbulent spatial transport dt−uv for the highest Reynolds
number case Re ¼ 2000. As shown in Figs. 3(a) and 3(b),
the shear stress cospectra E−uv and the production spectra
pr−uv are significant in the corresponding wavelength
range in the relatively near-wall region, while in the core
region of the channel the E−uv peaks are located at
larger scales compared to those of the production pr−uv.
Figures 3(c) and 3(d) show that for all y positions the
interscale transport tr−uv removes −huvi from the relatively
small scales λz=h ≈ 0.9 and brings it to large scales
λz=h ≥ 3, and at both these large and small scales the
spatial transport dt−uv carries −huvi from the near-wall
region to the channel center. It is also seen that both tr−uv
and dt−uv have a negative peak at relatively small scales in
the near-wall region, where a significant peak of the
production pr−uv is located. Comparing these distributions,
one can interpret that−huvi produced by pr−uv at relatively
small scales near the wall is transported to large scales at the
channel center by the interscale and spatial transport tr−uv
and dt−uv. The sum of tr−uv and dt−uv at the peak location of
E−uv at y=h ¼ 0 is about 23% of the production pr−uv.
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FIG. 2. Profiles at the channel center y=h ¼ 0 of the premulti-
plied (a1) spectra of the turbulent kinetic energy kzEkt, (b1)
cospectra of the Reynolds shear stress kzE−uv, and (a2), (b2) their
scale-by-scale production and interscale transport for four different
Reynolds numbers. The values are scaled by u2τ in (a1) and (b1)
while scaled byu3τ=h in (a2) and (b2). The colors represent different
Reynolds number cases: blue, Re ¼ 500; red, Re ¼ 1000; yellow,
Re ¼ 1500; purple, Re ¼ 2000; and the dashed and solid lines in
(a2) and (b2) present the premultiplied production and interscale
transport, respectively. The black dash-dotted line in (b2) repre-
sents kzðpr−uv þ tr−uv þ dt−uvÞ for Re ¼ 2000.
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FIG. 3. Space-wavelength (y- or η − λz) diagrams of the premultiplied (a) Reynolds shear stress cospectra kzE−uv and its scale-by-
scale (b) production kzpr−uv, (c) interscale transport kztr−uv, and (d) turbulent spatial transport kzdt−uv at Re ¼ 2000. The values are
scaled by u2τ for kzE−uv and by u3τ=h for the other quantities, and the black dashed line in each panel indicates the channel center
y=h ¼ 0.
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The contribution by such −huvi transport from the small
scales near the wall to the large scales at the channel
center is further depicted by the black dash-dotted line in
Fig. 2(b2), which represents pr−uv þ tr−uv þ dt−uv for
Re ¼ 2000. It is shown here that the peak location of
pr−uv alone is indeed shifted to the large-scale side by the
addition of tr−uv and dt−uv, and now the location corre-
sponds well to the peak of E−uv itself. Similar tendencies
are also observed for the other Reynolds number cases, but
not shown here for readability of the figure.
As described above, a certain influence from the small

scales near the wall on the large-scale structure in the
channel core region has been revealed in the present study
through the analysis on the scale-by-scale transport of the
Reynolds shear stress. Such interaction from small to large
scales is not explicitly observed through the transport of the
turbulent kinetic energy, but its productions at the large
scales are partly supported by influences from the small
scales through the Reynolds shear stress as prkt ¼
E−uvdU=dy. The physical process of the Reynolds stress
transport observed in the present study may correspond to
the bottom-up influences from the near-wall to large-scale
structures observed by Toh and Itano [26]. The present
observations are limited to low Reynolds numbers (even at
the highest Reynolds number case, Reτ ¼ 106), and there-
fore call for further investigations on such interscale
transport at higher Reynolds numbers.
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