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The Kuramoto model (KM) is a theoretical paradigm for investigating the emergence of rhythmic
activity in large populations of oscillators. A remarkable example of rhythmogenesis is the feedback loop
between excitatory (E) and inhibitory (/) cells in large neuronal networks. Yet, although the E/-feedback
mechanism plays a central role in the generation of brain oscillations, it remains unexplored whether the
KM has enough biological realism to describe it. Here we derive a two-population KM that fully accounts
for the onset of E/-based neuronal rhythms and that, as the original KM, is analytically solvable to a large
extent. Our results provide a powerful theoretical tool for the analysis of large-scale neuronal oscillations.
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The Kuramoto model (KM) is an idealized mathematical
model for exploring the birth of collective synchronization
in its most simple form. It consists of a population of
heterogeneous, all-to-all coupled oscillators, and is a
unique example of an exactly solvable system of nonlinear
differential equations [1-5]. Yet, the KM was originally not
intended as a specific description of any particular system,
and finds limited applications in the modeling and analysis
of natural oscillatory phenomena, see, e.g., Refs. [6-8].

An important example of collective synchronization is
that of large scale neuronal oscillations [3,9]. Despite
continued work using the KM to investigate neuronal
rhythms (see, e.g., Refs. [10-16]), it remains unknown
whether the KM actually accounts for the neuronal mech-
anisms resulting in such oscillations. In this Letter we
derive a simple, two-population KM, that describes one of
the basic mechanisms of generation of neuronal oscilla-
tions: The feedback loop between fast excitation (£) and
slow inhibition (/) in large neuronal networks [17-20].

El-feedback loop and El-based oscillations.—The
canonical neuronal network to model the E/-feedback
loop consists of two interacting populations of excitatory
and inhibitory neurons [21-24]. Here, we consider two
populations of N pulse-coupled “Winfree oscillators”
[2,25-29] with phase variables {67},_, _ (populations
are identified by o € {E, I}), which evolve according to

0 = of + &+ 0(07) (Koehy = Koghy). (1)

The natural frequencies @{ are drawn from Lorentzian
distributions of half-width y, centered at @,

9o(@) = (y/7)[(0 = @,)* + 1|7 2)

and &7 are independent, zero-mean delta-correlated noise
processes of strength D: <§§’(t)§’]-’/(t’)> =2D6(t—1)5; ;657
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In Eq. (1), Q(0) is the so-called phase response curve
(PRC) that determines the response of the oscillators to
perturbations. Here we adopt the (infinitesimal) PRC of
the theta-neuron model, Q(@) = 1 — cos 8, which is non-
negative and thus results in phase advances or delays in
response to excitatory or inhibitory inputs [30-32].
Neuronal oscillators with a non-negative PRC are called
Type 1, and include a broad class of neuronal models, see,
e.g., Refs. [31-33]. The oscillators interact all-to-all via the
mean fields

ho = fvz P, o)

which are population-averaged sums of all the pulses P
produced in each population. We use the family of
unimodal even-symmetric functions P(0) = (1 —r)(1+
cos@)(1 —2rcosf + r?)~!, with [* P(6)d0 =2z and a
free parameter r € (—1, 1), such that lim,_,; P(6) = 275(6)
[28]. Expressed in words, the jth oscillator in the E
population exerts a positive, pulselike influence P(Q}E ) of
strength K /N > 0 to each oscillator of the E population,
and of strength K;z/N >0 to each oscillator of the I
population [similarly for the jth oscillator of the I pop-
ulation, with an explicit “—" sign in Eq. (1) corresponding
to inhibition].

Figures 1(a) and 1(b) show EI-based oscillations of the
mean-field quantities 4, in simulations of (a) heterogeneous
and (b) noisy EI-Winfree networks, Eq. (1). The raster
plots Figs. 1(c) and 1(d) show that an E/-oscillation cycle
begins with the synchronous “firing” of a large cluster of
phase-locked E oscillators, followed by another synchro-
nous firing of the I oscillators. Note that, to emphasize that
oscillations emerge exclusively due to the interplay
between fast excitatory and slow inhibitory dynamics, in
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FIG. 1. El-based oscillations in a population of N = 2000
excitatory (E) and N = 2000 inhibitory (/) Winfree oscillators,
Eq. (1); with @p=15, @&, =05, Kg=K;z=0.5,
Kre=K;; =0, and r=0.99. (a), (b) Time series of the E
(red) and I (blue) activity-based mean fields #,. (c), (d) Raster
plots: A point is plotted when an oscillator’s phase reaches a
multiple of 2z, which is the peak location of P(0). In (a) and
(c) frequencies are Lorentzian distributed, with y = 0.1, and
D = 0. In (b) and (d) the noise strength is D = 0.1, and y = 0.

Fig. 1 we set the self-coupling terms to zero, Kgp =
K;; = 0, and consider Aw = @g — @; > 0. In the following
we derive a two-population KM that captures the main
features of the oscillations shown in Fig. 1, and that is
exactly solvable to a large extent.

Excitation-inhibition Kuramoto model (EI-KM).—
Invoking the averaging approximation, valid for weak
coupling and nearly identical oscillators [1,3], the
EI-Winfree model in Eq. (1) reduces to the EI-KM [34]

07 =7 +&
R N
T [Koecos(07—0F) — K cos(07 1)), (4)
Jj=1
where @¢ = wf + K,p — K,;. There are two major

differences between the E/-KM and the classical two-
population KM broadly investigated in the literature, see,
e.g., Refs. [1,35-40]. First, in the E/-KM the excitatory and
inhibitory coupling constants differentially shift the natural
frequencies @ and @!, and this largely affects the regions
of parameters where EI oscillations occur. Second,
although the cosine coupling does not promote synchrony
in the KM [41], the positive (E) and negative (/) cross-
coupling terms in Eq. (4) crucially conspire to synchronize
the oscillators [42]. Therefore, in the EI-KM, synchrony
sets in exclusively due to the cooperative action of both
the £ and the / populations, in consonance with the
El-feedback loop mechanism. Indeed, Fig. 2 shows numeri-
cal simulations of the EI-KM in Eq. (4) using the same
parameters as in Figs. 1(a) and 1(c)—except r, which in the
EI-KM is set to r = 1, see below. Figure 2(a) displays the
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FIG. 2. El-based oscillations in the EI-KM Eq. (4) with
quenched heterogeneity and N = 2000. (a) Amplitude of the
Kuramoto order parameters, Ry (red) and R; (blue); (b) raster
plots; (c) mean fields obtained applying Eq. (14) to Zg;
parameters are as in Figs. 1(a) and 1(c), except that here
r =1, instead of r = 0.99.

amplitude of the complex Kuramoto order parameters
Z,=R,eMe = NN % At =0, the amplitudes
Rg and R; are near Zero since the initial values of all the
phases are randomly distributed in the interval [0, 27). Then,
afterabrief transient, the Kuramoto order parameters converge
(up to finite-size fluctuations) to uniformly rotating solutions
Z,(t) = R,e™), with 0 < R, < 1 and ¥, = Q, signaling
the onset of collective synchronization. Note that the raster
plotin Fig. 2(b) shows that the cluster of £ oscillators precedes
the cluster of I oscillators, consistent with Fig. 1(c).

Finally, in the EI-KM the width of the pulses (controlled
by r) influences the intensity of the cosine coupling
functions. To lighten the notation, hereafter we set r = 1
in Eq. (4), corresponding to the limit of infinitely narrow
(Dirac delta) pulses—this is close to the value used in
Fig. 1. The generalization of our results to general r is
trivial.

Analysis of the EI-KM.—Equation (4) can be efficiently
analyzed in the thermodynamic limit, N — oo. To do so,
the discrete sets of phases and frequencies turn into
continuous variables {67, w?} — {6,, .}, and the corre-
sponding probability density functions f?(8,|m,, ) satisfy
coupled Fokker-Planck equations

0,f7 = =04, (f70,) + DI} f°. (5)

for which the fully incoherent state ff = f/ = (2z)7!
always a trivial solution [35,43]. It is convenient to
introduce the Fourier expansion of f*:

f°(0|lw, 1)

Z f"(a) t i (6)

where f§ =1 and (f?,)* = f7 (the asterisk denotes com-
plex conjugate). Thus, the Kuramoto order parameters are
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Substituting Eq. (6) into Eq. (5), yields two infinite sets of
integro-differential equations for the Fourier modes

ro 1 c ll c * *
f1 = —(ilo, + lzD)fz + Efl_l (KnEZE - KO'IZ])
il
+ §f7+1 (KoeZp — Ks1Z)), (8)

where @, = w, + K, — K,;. The stability of the incoher-
ent state can be analyzed by linearizing Eq. (8) [44]. To
simplify the analysis, we study the case in which cross- and
self-couplings are symmetric,

Kgr =K =K, Ky = Kggp = €K, )
and use the new parameter ¢ > 0 as a measure of the ratio of

self- to cross-coupling. Then we find that the eigenvalues
determining the stability of incoherence are

1
A= —y—Dj:E\/KZ —[Aw + (e—2)K]2 = i©. (10)

where Q = (@p + @;)/2 is the center of the frequency
distribution combining E and I populations. Note that
parameters y and D play identical roles in Eq. (10), as it
occurs in the KM [40,43]. Imposing Re(4,) =0 in
Eq. (10), we find the boundary of incoherence

(yi_“’Dx - (2—e)nyi (ny)2—4, (11)

which is the family of hyperbolas depicted by solid and
dashed black lines in Figs. 3(a)-3(d), for increasing values
of €. A necessary condition for the boundary Eq. (11) to
exist is

fD > 2. (12)
4

Hence, given a certain level of heterogeneity and/or noise,
synchronization sets in at large enough values of the
coupling strength. This is remarkably similar to the KM
[1,43], although here K represents cross-, and not self-
coupling. Moreover, Eq. (12) is not a sufficient condition
for synchronization in the EI-KM. If Eq. (12) is satisfied,
then Eq. (11) shows that synchronization is only achieved
for a particular range of values of the frequency mismatch
Aw. The coupling ratio e does not affect Eq. (12), but it
critically controls the range of Aw for stable incoherence:
Note that when e < 1, the boundary Eq. (11) is located at
positive values of Aw, and thus incoherence is always
stable when I oscillators are intrinsically faster than E

@ o ‘ __®

Aw/y Aw/y

FIG. 3. Phase diagrams of the EI-KM Eq. (4) with D = 0 and
coupling constants given by Eq. (9), for (a) e =0, (b) ¢ =1,
(c) € =2, and (d) € = 3. Regions of stable synchronization are
highlighted in gray. Synchronization and incoherence are both
stable in regions limited by black-dashed and red lines. The
asterisk in (a) marks the parameter values used in Fig. 2. Black
lines correspond to Eq. (11). Solid and dashed lines are separated
by codimension-2 points—obtained from Eq. (19)—and indicate
super- and subcritical bifurcations, respectively. Red curves
indicate saddle-node bifurcations.

oscillators (Aw < 0), see Fig. 3. Increasing the parameter €
shifts the boundary, with asymptotes at K = Aw/(3 — ¢€)
and K = Aw/(1 —¢), towards negative values of Aw.
Thus, increasing the coupling ratio through e provides a
key ingredient for synchronizing EI networks when
@; > @g, as I-to-1 coupling slows down [ oscillators while
E-to-E coupling speeds up E oscillators.

The synchronization region turns out to be larger than the
hyperbolic boundary defined by Eq. (11), particularly for
large € values (see Fig. 3 for the noise-free case). The
reason is that the bifurcation at Eq. (11) is often subcritical.
To investigate this further, next we consider the purely
heterogeneous (D = 0) and the purely noisy (y = 0) cases
separately, and show that the global picture is remarkably
similar in both instances.

The noise-free problem is particularly simple since it can
be assumed that the densities in Eq. (6) satisfy the so-called
Ott-Antonsen (OA) ansatz [45,46]

Li(@.1) = [f{(@.0)]". (13)

A first useful outcome of the OA ansatz is that it allows us
to infer the mean field 4, Eq. (3), from the Kuramoto order
parameter Z,, Eq. (7). Specifically, in the thermodynamic
limit 7, (1) = [*, 02” P(0)f°(0|w, t)g,(w)dwdd. Then,
considering P(6) as defined above, and the heterogeneity
in Eq. (2), one finds h, = Re[(1 + Z,)/(1 —rZ,)], see
Ref. [47]. In the limit » — 1, this relation reduces to

244101-3



PHYSICAL REVIEW LETTERS 120, 244101 (2018)

hy = (1—-R2)(1+ R%—-2R,cos¥,)"". (14)

Figure 2(c) displays the mean fields A,() obtained apply-
ing Eq. (14) to the Kuramoto order parameters Z,(¢) of the
EI-KM. It can be seen that uniformly rotating solutions of
the Kuramoto order parameters correspond to pulsatile
oscillations of the activity-based mean fields h,(z) [48].
Though the agreement between Figs. 1(a) and 2(c) is only
qualitative, it gradually improves as parameters y and Aw
are decreased and the averaging approximation becomes
more accurate [49].

A major simplification occurs assuming that f° evolve in
the so-called OA manifold, Eq. (13), as the system of
Eq. (8) becomes independent of the index /. Then, solving
the integrals in Eq. (7) by virtue of the residue theorem, we
find a system of two complex-valued ordinary differential
equations for Z,(t) = f{(w = @, — iy, 1)*

. A K K
Zo=i|bogZs = —5HZ3Z; + Zg) + =5+ (Z3Z) + Z1)|

(15)

with @, = @, + K,z — K,; + iy. Restricting our analysis
to the case defined by Eq. (9), Eq. (15) reduces to a three-
dimensional system for the amplitudes R, and the phase
difference ® = ¥, —¥;. The analysis becomes further
facilitated restricting to the symmetric subspace

RE:R[ER, (16)

in consistency with our numerical observations, the trans-
verse stability of the fixed points [50], and related work
[51]. Hence, we analyze the planar system

. K
R=R —y+§(1—R2)sinCI) , (17a)

® = Aw + K[(1 +R?)cos® -2+ ¢(1 —R?)]. (17b)

Besides the fixed point at R, =0, corresponding
to incoherence, the nontrivial fixed points of Egs. (17)
satisfy [52]

Aw K K? 4
— =12 RZ—1D]—+(R2+1 — .

(18)

Figure 4(a) displays R, obtained from Eq. (18) fore = 0. In
this case the transitions to synchronization are hysteretic
and the stable synchronized solution (solid black line)
exists only in an interval of values of Aw > 0. As the
self-coupling terms are increased, Fig. 4(b) shows that the
region of stable synchronization becomes broader, and
invades negative values of Aw, see also Figs. 3(a)-3(d).

(@ (b)
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FIG. 4. Bifurcation diagrams of synchronized (black) and
incoherent (green) states of Egs. (17) for K/y = 6, obtained
using Eq. (18). (a), (b) Amplitude R, and (c,d) phase difference
@, between the Kuramoto order parameters for (a), (c) ¢ = 0 and
(b), (d) € = 3.

Note that the phase difference ®, between Zp and Z;
increases monotonically with Aw, see Figs. 4(c) and 4(d),
but lies within the interval (0,z), and thus excitation
always precedes inhibition, see also Eq. (17).
Differentiating Eq. (18) with respect to R? and equating
the result to zero, allows us to analytically obtain the red
boundaries in Fig. 3 in parametric form (not shown),
corresponding to saddle-node bifurcations. As R, — 0,
these bifurcations meet the boundaries Eq. (11) at codi-
mension-2 points where the instabilities change from sub-
to supercritical. The exact value of the K coordinate is

(K/y)5 = \/(8 —2e? F2eV8+€?)/(1—€*). (19)

Substituting these values into Eq. (11) with D = 0, we find
the location of the codimension-two points represented
in Fig. 3.

Finally, we have numerically verified that very similar
bistability regions appear in the phase diagrams for the
noisy EI-Kuramoto model Eq. (4) with identical oscillators
(D > 0, y = 0). In addition, following Ref. [58], we found
that the codimension-2 points of the noisy E/I-KM are
located at [59]

(K/D)% = \/(12 —2€? F 2eV/24 +€*) /(1 = €?), (20)

which is strikingly similar to Eq. (19), but here the points
lie at slightly larger K values.

Conclusions.—Using the averaging approximation we
derived a two-population Kuramoto model—that we call
EI-KM—from an El-network of pulse-coupled, Type 1
oscillators. The resulting EI-KM displays a transition to
synchronization that has the main features of the E/-based
(also known as PING, pyramidal-interneuron gamma)
rhythms [17-24]: (i) Oscillations set in exclusively due
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to the cooperative action of both E and I populations;
(i1) oscillations emerge if excitatory dynamics is faster
than inhibition, irrespective of e. (iii) Otherwise, when
inhibition is faster than excitation, strong enough self-
coupling (e > 1) is necessary for synchrony to occur.
(iv) Excitation always precedes inhibition (0 < ®, < 7).
(v) The transition between incoherence and synchroniza-
tion is often hysteretic, see, e.g., Ref. [23]. While these
results have been rigorously demonstrated in the E/-KM
with Lorentzian heterogeneities (by means of the OA
ansatz), perturbative and numerical analysis of the EI-KM
with noise reveal the same global picture.
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