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Accessing new regimes in quantum simulation requires the development of new techniques for quantum
state preparation. We demonstrate the quantum state engineering of a strongly correlated many-body state
of the two-component repulsive Fermi-Hubbard model on a square lattice. Our scheme makes use of an
ultralow entropy doublon band insulator created through entropy redistribution. After isolating the band
insulator, we change the underlying potential to expand it into a half-filled system. The final many-body
state realized shows strong antiferromagnetic correlations and a temperature below the exchange energy.
We observe an increase in entropy, which we find is likely caused by the many-body physics in the last step
of the scheme. This technique is promising for low-temperature studies of cold-atom-based lattice models.
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Understanding and controlling complex many-body quan-
tum physics is an important research frontier in quantum
information, condensed matter physics, and quantum chem-
istry. Quantum simulation has emerged as a powerful tool for
computing many-body quantum phases and dynamics, with
the potential to exceed simulations on classical computers
[1,2]. By engineering highly coherent many-body systems, a
wide variety of Hamiltonians can be studied [3]. A unique
platform for scalable quantum simulation is ultracold atoms,
where the development of quantum gas microscopy has
enabled control at the single atom level [4,5]. Quantum
simulation extends to other promising platforms such as ion
traps, superconducting circuits, solid state systems, Rydberg
atoms, and photonic systems [6–11].
A major challenge of all of these platforms is creating a

coherent quantum many-body state, which is often the
ground state. Traditionally, cold atom experiments in
optical lattices realize quantum states by loading an
evaporatively cooled quantum gas into the lattice potential
[12]. This approach has been very successful [13–15], but
the minimum achievable temperatures for fermionic sys-
tems are limited by reduced cooling efficiency at low
temperatures. An alternative approach is quantum state
engineering. Generally, this method realizes an isolated
pure quantum state by initializing one wave function under
an initial Hamiltonian, then changing the Hamiltonian
while preserving coherence during the time evolution so
that the accompanying wave function becomes the target
state (see Fig. 1). Several platforms have used different
versions of quantum state engineering to create desired
quantum states [16–20], and schemes have been proposed
for ultracold fermionic atoms [21–23]. The site-resolved
readout and control afforded by quantum gas microscope
experiments [4,5,24–31] are perfect tools to implement the
quantum state engineering of many-body states of ultracold
fermionic atoms in optical lattices.

Here, we demonstrate quantum state engineering for a
many-body state of fermionic atoms in the Hubbard model.
This model describes spin-1=2 fermions on a lattice with
nearest-neighbor tunneling t and repulsive on-site inter-
action U. Under this model, a coexistence of phases can be
realized through inhomogenous particle density in global
thermal equilibrium [36]. A metal exists at low particle
density, characterized by a large density of states and high
entropy per particle. At half filling (one particle per site),
an antiferromagnet emerges, where spins arrange in an
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FIG. 1. Illustration of the quantum state engineering scheme.
(Top row) A low-density metallic state removes entropy from a
band insulator (BI), after which the two states can be isolated
thermally. The BI can then be ramped into an antiferromagnetic
(AFM) state by increasing the number of available sites. (Middle
row) Map of density inhomogeneity and states in our exper-
imental setup. (Bottom row) We implement our scheme by
engineering optical potential landscapes to change the Hamil-
tonian at each step (see main text and [32]).
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alternating pattern. This phase is gapped in the charge
sector by U, but it has a nonzero density of states due to
low-energy spin excitations. The band insulator (BI)
appears when the band is completely filled with two
particles per site, and thus it has a large energy gap equal
to the band gap, vanishing density of states, and vanishing
entropy per particle. Because of the differing density of
states, under a fixed global atom number and global
entropy, the density inhomogeneity can be engineered to
produce low-entropy states.
If a BI and metal are in thermal contact, entropy flows

from the BI into the metal, see Fig. 1. By using a fully
gapped state, we optimize this entropy redistribution
technique [13,21,22,26]. The result is an ultralow entropy
BI initial state with an entropy per particle as low as
0.016ð3Þ kB in units of the Boltzmann constant, over an
order of magnitude lower than the lowest value previously
achieved with entropy redistribution [26]. In the next
step, we thermally isolate the low-entropy region by
suppressing particle transport between the BI and reservoir.
Finally, we convert the gapped BI into a strongly correlated
many-body state at half filling. This final state has a
nearest-neighbor spin correlator of C1 ¼ −0.21ð1Þ, reflect-
ing strong antiferromagnetic character and a temperature
of kBT=t ¼ 0.46ð2Þ.
Our experimental setup consists of a balanced spin

mixture of the two lowest hyperfine states of fermionic
6Li in a combined square optical lattice and blue-detuned
potential. We set t=h ¼ 0.89ð1Þ kHz in units of the Planck
constant, and U=t ¼ 7.7ð3Þ or U=t ¼ 5.9ð2Þ [32]. The
quantum gas lies in the object plane of a quantum gas
microscope [32], allowing both atom imaging and potential
control at the site-resolved level [37]. Such precise control
is achieved by placing two digital micromirror devices
(DMD1 and DMD2) in the image plane and projecting their
patterns with blue-detuned light [32]. The DMD1 pattern is
designed to engineer the coexistence of phases through
changing the optical potential and therefore the particle
density across the sample, as in [26]. DMD2 creates the
isolating wall in the second step of our scheme.
The success of quantum state engineering schemes

fundamentally depends upon initial state preparation.
The initial density distribution consists of two regions of
constant but different densities: the doublon-filled center
and the surrounding metallic reservoir [see Fig. 2(a)],
created with DMD1 by setting the potential offset between
the two regions to Δ ≈ 2U. Following entropy redistrib-
ution, we achieve an ultralow entropy BI of more than 130
sites. Because of light-assisted collisions that occur during
the imaging process, sites initially containing doublons
appear as empty [37]. We obtain the entropy per particle on
a single site from the measured singles density ns [32]. The
average singles density n̄s across the BI region is 0.4(1)%,
corresponding to an upper bound for the average entropy
per particle across the region of 0.016ð3Þ kB. This signifies

a 50-fold reduction in entropy compared to a homogenous
system, showing that the technique is highly efficient [32].
This entropy is significantly lower than that of the lowest-
entropy two-component BIs realized in cold-atom systems
thus far [25,36].
Most cold atom experiments take place in a harmonic

trap, where some entropy redistribution is already present
because of inhomogenous particle density. We compare
entropy redistribution efficiencies between a harmonic
pattern and the employed pattern for quantum state engi-
neering by interpolating linearly between these two pro-
files, parametrized by the fraction f. Atom number, total
entropy, and BI size are kept constant. As shown in

FIG. 2. Ultralow entropy BI at U=t ¼ 7.7ð3Þ. (a) Raw fluo-
rescence image of a single BI, an optical potential schematic, and
an average density map of 50 BI realizations. Through entropy
redistribution, we create a BI with > 130 sites and an average
entropy per particle 0.016ð3Þ kB. Error bars denote the standard
error of 50 measurements and azimuthal averaging. (b) By
continuously tuning the optical potential between a harmonic
trap and our entropy redistribution pattern at a constant BI size at
U=t ¼ 5.9ð2Þ, we see a decrease in BI entropy due to an
increased entropy redistribution efficiency. The final pattern
yields a slightly higher entropy than the optimum, but it is
necessary for our scheme. Error bars denote a standard error of
> 20 measurements each with 133 lattice sites.
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Fig. 2(b), entropy redistribution reduces the BI entropy per
particle by more than a factor of 3 compared to the
harmonic trap, even for a pattern that has not been
optimized for redistribution efficiency, as in Fig. 2(a).
We find a slight increase in entropy moving to the final
pattern, which may result from a denser reservoir or from a
loss of thermal contact between the system and reservoir.
Indeed, the f ¼ 1 pattern exhibits a ring of zero density
between these two regions. This ring is necessary in the
next step of the quantum state engineering scheme.
After initializing the low-entropy BI, the next step is to

isolate it from the remaining atoms. We adjust the entropy
redistribution pattern such that the BI is surrounded by
holes, see Fig. 3(a). To ensure full isolation of the BI, we
subsequently raise a circular wall with a thickness of about
3 sites using DMD2 [32]. We set the wall diameter to a
value larger than the BI size. The region Ω inside the wall
therefore contains both the BI and empty sites. For the
shape of the BI, we choose either a circular 12-site diameter
disk (similar to the f ¼ 1 configuration) or a rectangular

8-site by 12-site box. Both regions in Ω are approximately
homogenous in density with an energy offset Δ ≈ 2U. To
ensure that the two regions have the desired densities, we
set the global chemical potential inside Ω to a value below
Δ by adjusting the total atom number [32].
For the box-shaped configuration [see Fig. 3(a)], the

entropy per particle within Ω is 0.25ð1Þ kB. This entropy is
greater than that of the pure BI because it includes both
doublon and hole regions; indeed, the pure BI entropy per
particle away from the box edge is only 0.08ð1Þ kB, so the
greatest entropy contribution to Ω is from the boundary
between the regions. More specifically, if the box potential
is not perfectly aligned with the lattice sites, the potential
offset on sites close to the edge can be modified. Even if the
box is aligned, the microscope point spread function
smooths the potential across one or two lattice sites.
These effects lead to density defects on both sides of the
box edge that are visible as singly-occupied sites and
increased entropy, see for example the upper box edge in
Fig. 3(a). The ring-shaped wall has a negligible effect on
initial entropy, confirmed through comparing the entropy
with and without the wall.
The final step in our quantum state engineering scheme

is to convert the initial state into the target many-body state.
For this measurement we use the disk pattern for the BI to
reduce alignment sensitivity. To ensure half filling in the
final state, the wall diameter is set such that the number of
holes and doublons within Ω is approximately equal. After
initialization and isolation, we slowly remove the potential
offset between holes and doublons by reducing the DMD1
laser power [32]. In Fig. 3(b), we show the measured
singles density ns after a 40 ms linear ramp of the potential
offset. The atomic density extends over the entire region Ω
and sharply decreases at the inner edge of the wall,
indicating particle transport has occurred from the doublon
core to the surrounding empty sites. The inner and outer
regions are separated by the insulating wall, marked by a
ring of empty sites. In the final state, atoms in Ω are
expected to show antiferromagnetic correlations, whose
strength reflect the adiabaticity of the ramp. The nearest-
neighbor spin correlations, measured with a technique
established in previous work [33], are strongly antiferro-
magnetic with values up to C1 ¼ 4hŜzi Ŝziþ1i ¼ −0.21ð1Þ.
Here, Ŝzi denotes the standard spin-1=2 operator along the
z direction on site i. These observations demonstrate a
successful implementation of quantum state engineering,
where a strongly correlated many-body state is created
from an initially uncorrelated BI of doublons.
Locally changing density and spin correlations within Ω

originate from the underlying harmonic confinement cre-
ated by the lattice lasers. The maximum in the singles
density radial profile indicates the density is above half
filling in the center and continuously decreases for larger
radii, see Fig. 3(c). We intentionally keep this confinement
to study whether the system is in thermal equilibrium.

FIG. 3. (a) Average density map (40 realizations) and configu-
ration of entropy redistribution at U=t ¼ 5.9ð2Þ after isolation.
Imperfections in the optical potential manifest as singly-occupied
sites, as seen at the upper edge of the box. (b) Average density
map of 41 images after a ramp highlighting how the insulating
wall separates the inner and outer regions, with initialization via a
disk pattern. (c) Corresponding density and nearest-neighbor
correlator profiles vs radius after ramp. The nearest-neighbor
correlations are antiferromagnetic with a strength of up to
C1 ¼ −0.21ð1Þ. A simultaneous fit to both profiles (solid line)
gives a temperature of kBT=t ¼ 0.46ð2Þ. The fit is limited to
radius 9, to avoid effects from the insulating wall. Error bars
denote a standard error of > 40 sets of correlation maps and
azimuthal averaging. For ðbÞ þ ðcÞ, U=t ¼ 7.7ð3Þ.
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When applying a simultaneous fit of exact theoretical
predictions to both measured radial profiles with shared
fit parameters, we find a reasonable agreement [33,34].
This shows that the system within Ω is consistent with a
thermal equilibrium state. In order to determine whether
deviations from thermal equilibrium or finite-size effects
are present, more detailed knowledge of corrections to the
exact confinement potential is required.
From the fit, we obtain a temperature in Ω of

kBT=t ¼ 0.46ð2Þ, which is comparable to the temperatures
achieved so far in harmonic traps [31], but still higher than
the lowest value of kBT=t ¼ 0.25ð2Þ achieved with entropy
redistribution [26]. Although this temperature is surpris-
ingly low given the simple ramp scheme used here, the
system is still far from the ground state. Besides the
nonzero entropy of the initial BI, this nonzero temperature
may result from the nonadiabaticity of the ramp or residual
heating. We now explore both possibilities.
We first study nonadiabaticity by examining the entropy

increase after completing and reversing the offset ramp
[32]. For this measurement, we use the box pattern for the
lowest initial entropy inΩ. As heating effects are negligible
in the initial state, a perfectly adiabatic process implies
measuring the same entropy as this initial state. When
varying the end point of the ramp Δf, we find that the
entropy per particle increases steadily as the ramp end point
decreases, see Fig. 4(a). The qualitative shape of the curve
suggests a lack of adiabaticity largely throughout the
second half of the ramp. In this regime, Δ ≈U and particles
can freely tunnel out of the doublon core. For the full two-
way ramp, we find an entropy increase of 0.46ð2Þ kB.
Although this increase strongly indicates a nonadiabatic
ramp, it may actually be caused by greater heating rates
during the ramp, for example, due to changes in the many-
body energy spectrum.
To distinguish heating during the ramp from nonadia-

baticity, we measure the heating rate for each ramp end
point by holding for a variable time τh before reversing the
ramp and measuring the resulting entropy [32]. Heating
rates are generally greater than the initial heating rate,
with values up to 2.1ð2Þ kB=s, see Fig. 4(b). The observed
increase in the heating rate at Δ ≈U indicates a drastic
change in the many-body energy spectrum, as already
suggested by the nonadiabaticity measurement of Fig. 4(a).
From the measured rates, we estimate an entropy increase
from heating of 0.06 kB for the full ramp. This indicates
that the majority of the entropy increase does not originate
from heating, but rather from nonadiabaticity. When
decreasing the ramp rate for the full two-way ramp, the
final entropy increases, indicating that any improvement in
adiabaticity is insufficient to overcome heating during the
additional ramp time.
Despite the nonadiabaticity, the achievement of low

temperatures with such a simple ramp scheme is encour-
aging. A possible improvement is to reduce the amount of

required particle transport, which may reduce the non-
adiabaticity. We repeat the adiabaticity measurement for an
initial system consisting of alternating stripes of holes and
doublons surrounded by a box-shaped wall, see bottom
right panel of Fig. 4(a). While the initial entropy is worse
than that of the box due to the more complex potential
landscape, crucially this configuration yields no significant
improvement in the entropy increase. This suggests that the

FIG. 4. Examining the final ramp adiabaticity at U=t ¼ 5.9ð3Þ.
(a) A round trip measurement, beginning with an isolated box of
doublons surrounded by holes, demonstrates nonadiabaticity,
predominantly in the second half of the offset ramp off (circles).
Adiabaticity is not significantly improved by initializing the holes
and doublons in stripes (diamonds). Horizontal lines with shading
indicate reference measurements and uncertainty, taken with no
ramp. Lower panels show schematic images for the particle
density n and measured average singles density maps for the box
(left) and stripe (right) configurations at different times through-
out the round-trip ramp. Dashed lines indicate the wall inner
edge, while dotted lines enclose BI regions. Error bars are smaller
than the markers, and denote a standard error of 40 (187)
measurements for the box (stripe) pattern. (b) We quantify
heating rates at various points throughout the ramp (upper left),
which enable us to approximate the contribution of the entropy
increase due to heating. Error bars for entropy measurements
(right) denote a standard error of 5 measurements; error bars for
heating rates (lower left) are from the fits.
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dominant reason for nonadiabaticity lies within the many-
body physics occurring during the ramp, which strongly
depends on how the ramp is implemented and what
intermediate phases are crossed [38–40]. An improvement
could be to avoid a closing charge gap in the many-body
spectrum during the ramp, possibly by using a double-well
superlattice. Such a configuration has been predicted to be
very efficient in numerical simulations [23,41].
In conclusion, we have implemented a quantum state

engineering scheme to create a fermionic many-body state.
Through adjusting the initial balance of doubly-occupied
and unoccupied sites, this technique offers the flexibility to
vary the doping of the sample on the single-atom level.
Furthermore, the remarkably low initial entropies afforded
by entropy redistribution may enable even lower temper-
atures at arbitrary doping to search for signatures of a d-
wave superfluid state [42]. However, additional studies
must be conducted to determine the optimum path in the
parameter space, which minimizes the entropy. Analogous
quantum state engineering schemes can be designed for
studies of stripe phases with strongly magnetic atoms,
massively entangled spin states, and adiabatic quantum
computation [43–45].
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