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Using a low background data sample of 9.7 x 10° J/w — yi/, i = yx*n~ events, which are 2 orders of
magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII,
the decay dynamics of 5’ — yz™z~ are studied with both model-dependent and model-independent
approaches. The contributions of w and the p(770) — w interference are observed for the first time in the
decays ' — yx*z~ in both approaches. Additionally, a contribution from the box anomaly or the p(1450)
resonance is required in the model-dependent approach, while the process specific part of the decay
amplitude is determined in the model-independent approach.

DOI: 10.1103/PhysRevLett.120.242003

The radiative decay n’ — yzTn~ is the second most
probable decay mode of the #' meson with a branching
fraction of (28.9 £0.5)% [1] and is frequently used for
tagging #' candidates. In the vector meson dominance
(VMD) model [2], this process is dominated by the decay
' — yp(770) (hereafter referred to as p°). In the past, the
dipion mass distribution was studied by several experi-
ments, e.g., JADE [3], CELLO [4], PLUTO [5], TASSO
[6], TPC/yy [7], and ARGUS [8], and a peak shift of about
+20 MeV/c? for the p° meson with respect to the expected
position was observed. Dedicated studies, using about 2000
7 — yx* ™ events, concluded that a lone p° contribution in
the dipion mass spectrum did not describe the experimental
data [9]. This discrepancy could be attributed to a higher
term of the Wess-Zumino-Witten anomaly, known as the
box anomaly, in the chiral perturbation theory (ChPT)
Lagrangian [10]. To determine the ratio of these two
contributions, it was suggested to fit the dipion invariant
mass spectrum by including an extra nonresonant term in
the decay amplitude to account for the box anomaly
contribution [11]. Using a sample of 7490 + 180 events,
evidence for the box anomaly contribution with a 4¢
significance was reported by the Crystal Barrel experiment
[12], whereas the observation was not confirmed by the L.3
experiment [13] using 2123 + 53 events.

A recently proposed model-independent approach [14],
based on ChPT and dispersion theory, relates the n/n" —
yrtn~ decay amplitudes directly to the ete™ — mtn~
process, which dominates the hadron production cross
section at low energies and gives the largest hadronic

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

contribution to the muon anomalous magnetic moment
[15]. The amplitudes for /5’ — ya*z~ therein are given as
a product of the pion vector form factor Fy(s) and a
reaction specific part P(s), where s is the 7z~ invariant
mass squared. The Fy(s) term is extracted from the
ete™ - xn~ cross section or from P-wave isovector
nr phase shifts. The P(s) term, which can be expanded
into a Taylor series around s = 0, is expected to be similar
for n and ' decays [16], and has been determined in 5
decays by WASA-at-COSY [17] and KLOE [18], but not
yet for ' decays due to the limited statistics.

In this Letter, we present a precision measurement of the
dipion mass distribution for the #' — ym*z~ process
originating from the radiative decays J/yw — yi' based
on (1310.6 +7.0) x 10° J/w events [19], which is pro-
duced in e"e~ annihilation, collected with the BESIII
detector [20]. Both model-dependent and model-indepen-
dent approaches are used to investigate the decay dynamics.

Candidates of J/yw — yi/, ¥ — yx™zx~ are required to
have two charged tracks with opposite charge and at least
two photons. The selection criteria for charged tracks and
photon candidates are the same as those in Ref. [21], except
for the minimum energy requirement of the photon can-
didates on the barrel showers, which is 40 MeV instead of
25 MeV in this analysis.

A four-constraint (4C) energy-momentum conservation
kinematic fit is performed under the yyz"z~ hypothesis,
and a loose requirement of y3- < 100 is imposed. This
requirement removes 39.3% background while the effi-
ciency loss is 2.1%. For events with more than two photon
candidates, the combination with the smallest Zﬁc is
retained. In order to remove background events with a
79 in the final states (e.g., J/w — xta 0, 771'+ﬂ_7[0), we
require that the yy invariant mass is outside the z° mass
region, |M(yy) —my| > 0.02 GeV/c?, where m, is the
nominal mass of the z° [1]. Since the radiative photon from

242003-3
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FIG. 1. Invariant mass spectrum of yz™z~. Dots with error bars
represent the data, and the hatched histograms are MC simu-
lations, where the backgrounds are normalized to the expected
contributions as described in the text.

the 7 is always more soft than that from the J/y decays,
the yz*z~ combinations closest to the nominal #'
mass (m,), are kept as 7/ candidates. After the above
selection, a clear #' signal is observed in the yz 'z~
invariant mass spectrum, as shown in Fig. 1. To select
candidate events from #' decays, |[M(yz"z~)—m,| <
0.02 GeV/c? is required.

An inclusive Monte Carlo (MC) sample of 1.2 x
10° J/yw decay events that are generated with the
LUNDCHARM and EVTGEN models [22,23] is used to
investigate possible background processes. These include
events with no ”’s in the final state (non-#’) and those from
7 — ntn~7°. We use the events in the 7/ mass sideband
regions  (0.04 < [M(yztz") —m,| < 0.06 GeV/c?) to
estimate the non-;’ background contribution, which is at
a level of 1.42%. For the ' = ntz~7z°(yy) background, a
MC study predicts the number of background events to be
0.16%, and its effect is not included in the fit, but taken into
consideration in the systematic uncertainty study.

With the #' mass window requirement, a low background
sample of about 9.7 x 10° #' candidates is obtained, which
is about 120 times larger than the previous largest sample
reported by the Crystal Barrel experiment [12]. The back-
ground subtracted and efficiency corrected angular distri-
bution of z" in the helicity frame of the z"z~ system,
| cos 8+, is shown in Fig. 2. The distribution is very well
described by dN/dcos @, « sin? @+, which is expected
for a P-wave dipion system. A detailed MC study indicates
that the reconstructed 7z 7z~ invariant mass M (7" z~) has a
small shift with respect to the true value, and this is
corrected as a function of M (7" z~) according to the values
obtained in MC studies. The maximum shift is less than
0.75 MeV/c?. The M(x*z~) distribution with the mass
shift correction is illustrated as dots with error bars
in Fig. 3.

The dipion mass dependent differential rate is
given by [12] [d['/dM(x*77)] = [k}qz(s)/487° ]| A%,

x10°
T T T T T T T T T T T T T T L=
150 - ]
©9 100 — —
= L 3 _
o B _
> L .
w L _
50 — ]
0 B Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il ]
0 0.2 0.4 0.6 0.8 1

|cos6_,|

FIG.2. Background subtracted and efficiency corrected angular
distribution of z " in the helicity frame of the z" 7~ system. Dots
with error bars are data, and the curve is the fit with a sin®6,+
function.

where k, = (m;, —5)/(2my), q.(s) = /s —4mz/2 and
A is the decay amplitude. Both the model-dependent and
model-independent approaches are carried out to inves-
tigate the decay dynamics.

In the model-dependent study, by assuming that the
possible non-p° contributions are from w, p(1450) (here-

after referred to as p’), and the box anomaly, we have
[11,12,24]

 BWES(s) (1 + 8552 BW, (s)) + BBWS(s)
n 1+p

X 24/487M;* + a,

where 6 and f are complex numbers representing the
contributions of the @ and p’ mesons relative to the p°;
a 1s a constant accounting for the box anomaly contribution
[111; and BWgS(s), BW,,(s), and BWSS(s) are the propa-
gators for the p°, @, and p’ mesons, respectively. Since the
p° component is dominant in the M(z"z~) distribution,
its shape parametrization plays a vital role in the determi-
nation of other components, and is represented with the
Gounaris-Sakurai approach (GS) [25,26]. BW,,(s) = M2/
(M2, —s—iM,I'",), where M, and T, are the w-meson
mass and width, respectively. The p’ is also described with
the GS parametrization. The masses and widths for the
and p’ mesons are fixed to their nominal values [1], while
those for p° are floated in the fit.

Binned maximum likelihood fits are performed to the
M (z* z~) distribution between 0.34 and 0.90 GeV/c? with
different scenarios, where the decay amplitude is corrected
by a M(ztzn~)-dependent detection efficiency and is
smeared with a M(z"z~)-dependent Gaussian function
to account for the experimental mass resolution. The non-#’
background is represented by the ' sideband events as
discussed above, and is fixed in the fit. Fits with only the po
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FIG. 3. Model-dependent fit results in case (a) p°-w-box
p P

anomaly and (b) p’-w-p’. Dots with error bars represent data,
the green shaded histograms are the background from 7’ sideband
events, the red solid curves are the total fit results, and others
represent the separate contributions as indicated. To be visible,
the small contributions of w, the box anomaly (p') and the
interference between w and the box anomaly (p) are scaled by a
factor of 20.

contribution and with additional p°-w interference give the
goodness of fit y?/ndf =3365/110 and 3094/108,
respectively, where ndf is the number of degrees of
freedom. The results indicate that these components are
insufficient to describe the data and extra contributions are
necessary. To improve the description of the data, we
performed a fit, shown in Fig. 3(a), including the additional
box anomaly term together with p°-w interference, and
much better agreement with y?/ndf =207/107 is
obtained. An alternative fit by replacing the box anomaly
with the p’ component gives considerably worse agreement
with y?/ndf = 303/106, as illustrated in Fig. 3(b). Fit
results of the above two cases are summarized in Table 1.
Both cases yield p° mass and width close to those in the

PDG [1]. A fit including both the p’ and box anomaly
gives a reasonable goodness of fit (y?>/ndf = 134/105).
However, a very strong correlation in amplitude between
the box anomaly and the p’ components, i.e., the correlation
coefficient is —0.986, is observed, due to the tail of the p’
having a similar line shape as that of the box anomaly.
Thus they are not well under control, and it is hard for one
to distinguish them in the fitting. Whereas the mass
and width of the p° are stable, which are 776.43 4 0.36,
150.26 4+ 0.56 MeV/c?, respectively. Therefore a refined
model dependent amplitude beyond including just the p’ or
the box anomaly contribution is desirable.

As suggested by Ref. [14], a model independent
approach is also implemented to investigate the decay
dynamics. The decay amplitude follows A = NP(s)Fy(s),
where N is a normalization factor, a polynomial function
P(s) = 1 + ks + As* + EBW,, + O(s*) includes the pos-
sible @ term £ and quadratic term 4, and the pion vector
form factor Fy(s) is obtained from eTe™ — 7z~ mea-
surements [27-31].

A fit to the data gives x = 0.992 4 0.039 GeV~2,
A=-0.523 £0.039 GeV™*, £=10.199 4 0.006, with
x*/ndf = 145/109, where the uncertainties are statistical
only. The fit result is shown in Fig. 4, and the statistical
significances of nonzero quadratic term and ® term
are 130 and 340, respectively, which are estimated with
the changes of the log likelihood value and the number
of degree of freedoms. An alternative fit without
the @ contribution yields x = 1.420 & 0.047 GeV~2 and
A =—0.951 +0.046 GeV~*, which is compatible to a
recent prediction 4 = —1.0+0.1 GeV~* [32]. However,
this fit corresponds to a very poor goodness of fit
(y*/ndf = 1351/110) and fails to describe the data.
Different from the measurements of 7 — yz*z~ decays
[17,18], which are not sensitive to the quadratic term, both
the quadratic term and the @ contribution are significant in
the ' — yxtn~ decays.

The systematic uncertainties in the model-dependent and
model-independent approaches are discussed in detail in
the following and are summarized in the Supplemental
Material [33]. The total systematic uncertainty is the
quadrature sum of the individual values by assuming them
to be independent.

The uncertainty associated with the 4C kinematic fit
originates from the difference between data and MC
simulation. This difference is reduced by correcting the
track helix parameters of the MC sample as described in
Ref. [34]. To estimate the corresponding uncertainty, the
analysis is repeated without the track helix parameters
correction, and the resultant change is assigned as the
uncertainty.

The MDC tracking and photon detection efficiencies are
studied based on a clean sample of J/w — pz. The
differences between data and MC simulation are inves-
tigated as a function of momentum (energy), and are less
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TABLE L
and the second ones systematic.

The results of the model-dependent fits to the M(z* ™) distribution in different cases. The first uncertainties are statistical

Model-dependent fit

pP-w-box anomaly

p--p'

M(p°) [MeV/c?]
[(p°) [MeV]
arg o [rad]

18] [103]

arg f# [rad]

1Bl

7 — yntx~ viabox)
/

(
(f = yo—yrtn)
( /
(' = yrta viap')

774.34 £0.18 £0.35
150.85 + 0.55 & 0.67
(0.65 +3.14 £ 2.62) x 1072
1.61 £ 0.05 4+ 0.13

—-11.56 £0.21 £0.32
(33.34 4-0.06 + 1.60)%
(3.25+£0.21 £0.52) x 107
(2.45 £0.09 £ 0.19) x 1073

772.93 £0.18 £ 0.34
150.18 +0.55 £ 0.65
(—=2.59 £3.19 £2.62) x 1072
1.59 £ 0.05 £ 0.11
3.28 £0.11 £0.04
0.26 £ 0.01 £ 0.01

(3443 £0.52 4+ 1.97)%
(322 4+0.21 £0.52) x 107*

(3.43 +0.38 +0.28) x 1073

than 1% for each charged track and 1% for each photon
[35]. To evaluate their impact on the results, an event-by-
event correction on the tracking and photon detection
efficiency is performed as a function of momentum
(energy). The resultant changes on the results are taken
as the systematic uncertainties.

The uncertainty from the #" mass window requirement is
evaluated by varying the required values by +6 MeV/c?,
which is the mass resolution from the MC simulation, and
the maximum change of the results is taken as the
uncertainty.

Systematic sources related with the fit procedure include
the binning, the fit range, the background, the mass
resolution of M(z*z~), and the input parameters in the
fit. The uncertainty from binning is studied with the same
fit procedure with varied bin width. For the uncertainty due
to the fit range, we take the larger change of the fit result

30000

| —¢— Data
25000 Fit

" I v sideband

20000

15000

10000

Events / (5 MeV/c?)

5000

pull

M(n*n’) (GeV/c?)

FIG. 4. The results of the model independent fit with @
interference. Dots with error bars represent data, the (green)
shaded histogram is the background contribution from 7’ side-
band events, and the (red) solid curve is the fit result.

with varied fit ranges as the uncertainty. Two systematic
sources, i.e., the ' sideband and the small contribution of
7 — ntx~x°, are considered as the uncertainty related with
the background in the fit. The former one is estimated by
changing the sideband region, while the latter one is studied
by including the background in the fit with a fixed
magnitude and shape in accordance with the MC study.
We assign the quadratic sum of the two uncertainties as the
total background uncertainty. The impact caused by the
7t~ mass resolution is estimated by varying the resolution
by +10% in the fit, and the maximum change of the fit
result is assigned as the uncertainty. For the model
dependent study, the uncertainty due to the mass and width
of w, p’ resonances is estimated by varying the input values
with £106 of the corresponding uncertainties from the PDG
[1], respectively, and taking the quadratic sum of the
maximum change of the fit results as the uncertainty of
the resonance parameters.

For the measurement of the branching fraction of #’
decays into yp°, yw, y box anomaly and yp’, the additional
uncertainties from the branching fractions of J/y — y#’ [1]
and the number of J/y events [19] are also taken into
account.

In the model independent approach, the uncertainty
associated with the input pion vector form factor Fy(s),
is estimated by an alternative fit incorporating the line
shape of Fy(s) from Ref. [36]. The resulting differences,
16.4%, 34.7%, and 3.4% for the k, A, & parameters,
respectively, determine the systematic uncertainty. Since
this uncertainty is theoretically dependent, it is treated as a
separated uncertainty in the final results.

In summary, the /' - yz"z~ decay dynamics is studied
based on a sample of 9.7 x 10° events originating from the
radiative decay J/w — yi' of 1.31 x 10° J/y events col-
lected with the BESIII detector. We have measured the
dipion invariant mass distribution and performed fits using
model dependent and independent approaches. For the first
time, the @ contribution is observed in the dipion mass
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spectrum in the decays ' — yax™ ™. The model-dependent
fit indicates that only the components of p° and @ as well as
the corresponding interference fail to describe the data, and
an extra significant contribution, i.e., the box anomaly or p’,
is found to be necessary for the first time. The correspond-
ing fit results and the measured branching fractions are
summarized in Table I. The data call for a more complete
model-dependent amplitude beyond just including the box
anomaly or p’ contribution for the M (z"z~) spectrum.
The model independent approach [14] provides a sat-
isfactory parametrization of the dipion invariant mass
spectrum, and yields the parameters of the process-specific
part P(s) to be k =0.992+0.039 +0.067 +-0.163 GeV~2,
A = —0.523 £ 0.039 & 0.066 £ 0.181 GeV~™*, and &=
0.199 +0.006 £0.011 £0.007, where the first uncertain-
ties are statistical, the second are systematic, and the third
are theoretical. In contrast to the conclusion in Ref. [14]
based on the limited statistics from the Crystal Barrel
experiment [12], our result indicates that the quadratic term
and the o contribution in P(s), corresponding to statistical
significances of 136 and 340, respectively, are necessary.
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