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The IceCube neutrino discovery was punctuated by three showers with Eν ≈ 1–2 PeV. Interest is intense
in possible fluxes at higher energies, though a deficit of Eν ≈ 6 PeV Glashow resonance events implies a
spectrum that is soft and/or cutoff below ∼few PeV. However, IceCube recently reported a through-going
track depositing 2.6� 0.3 PeV. A muon depositing so much energy can imply Eνμ ≳ 10 PeV. Alter-

natively, we find a tau can deposit this much energy, requiring Eντ ∼ 10× higher. We show that extending

soft spectral fits from TeV-PeV data is unlikely to yield such an event, while an ∼E−2
ν flux predicts

excessive Glashow events. These instead hint at a new flux, with the hierarchy of νμ and ντ energies
implying astrophysical neutrinos at Eν ∼ 100 PeV if a tau. We address implications for ultrahigh-energy
cosmic-ray and neutrino origins.
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Introduction.—The discovery of astrophysical neutrinos
by IceCube [1–9] allows for new characterizations of the
high-energy universe. Neutrinos can arise from cosmic-ray
interactions within sources (e.g., [10–12]) and with extra-
galactic photon backgrounds (e.g., [13–20]). The fluxes
vary greatly depending on assumptions, and data may yield
insight into the inner workings of ultrahigh-energy cosmic-
ray (UHECR) accelerators [21] or unexpected physical
effects [22,23].
Along with dozens of ∼10–100 TeV events, IceCube

detected three contained-vertex showers with deposited energy
Edep ≈ 1–2 PeV (likely with Eν ≈ Edep) [1,3]. The neutrino
spectrum indicated below PeV energies is significantly softer
than E−2

ν , reaching a sharp upper limit at Eν ≳ 5 PeV
(5 × 106 GeV; Fig. 1) due to a lack of ∼6 PeV showers
from on shell ν̄ee → W− Glashow resonance [24] scattering.
However, IceCube recently reported an upgoing

through-going track depositing Edep ¼ 2.6� 0.3 PeV
[7–9]. We will see that the required Eν to produce this
event is ≫ Edep, significantly larger than even the PeV
shower events. This highest-energy event raises important
questions concerning astrophysical neutrinos, including,
subtly, what flavor of neutrino produces such a track?
We first consider the standard assumption that the track

is a muon. We show (i) soft astrophysical neutrino spectra
(e.g., E−2.6

ν ) are unlikely to produce such muons, and
(ii) harder spectra (e.g., ∼E−2

ν ) overproduce Glashow
shower rates. This motivates us to better characterize the
super-Glashow energy regime. We examine heuristic

spectral models covering a variety of production scenarios
and their expected signals.
We also consider an intriguing possibility of a track left

by a tau lepton. Though detection methods for ντ have been
discussed over many years (e.g., [35–46]), no distinct τ-like
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FIG. 1. IceCube 4 yr contained HESE data [5] (which do not
include the Edep ¼ 2.6 PeV track event), IceCube 6 yr νμ band
(assumes the PeV track is a muon [9]), and Auger ντ upper limits
[25]. Also, an E−2.6

ν flux (long dashed) and extragalactic spectral
models peaking near 107 GeV (φ7; dotted), 108 GeV (φ8;
dashed), and 109 GeV (φ9; solid). Models φ7 and φ8 resemble
BL Lac AGN models, while rescaled combinations of φ7 and φ9

approximate cosmogenic neutrinos (see [26]). All data and fluxes
are summed over flavors (and νþ ν̄), assuming φνe ¼ φνμ ¼ φντ

and φν ¼ φν̄.
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event has yet been identified by IceCube [47]. Energy
deposition by taus within the detector leads to many
possible signals (see Fig. 2 and [46]). However, through-
going tau tracks are little discussed and energy-loss
stochasticity presents difficulty in individually identifying
PeV tracks as muons or very-long-lived taus with decay
length γτcττ ≈ ðEτ=20 PeVÞ km.
For either scenario, we deduce that a harder, higher-

energy astrophysical neutrino flux than previouslymeasured
is more likely present. A tau track traversing the ∼1 km
detector without decaying would imply a much higher
parent neutrino energy and give an unexpected window
into astrophysical neutrinos at ∼100 PeV. We address
differences in the energy spectrum and angular distribution
of tau and muon events and discuss implications for out-
standing problems in UHECR and neutrino physics.
Multi-PeV tracks.—Analytic methods have been pre-

sented for charged-current (CC) and neutral-current (NC)
showerlike event rates in IceCube [48,49] and muon fluxes
from νμ interactions [50–52], though these cannot be
directly applied to long-lived taus.
We determine the tau flux spectrum dNτ=dEτ in ice using

a volumetric source term QðEτÞ for taus produced by ντ

d
dEτ

�
bτðEτÞ

dNτ

dEτ

�
þ mτ

cττEτ

dNτ

dEτ
¼ QðEτÞ; ð1Þ

with tau energy loss bτðEτÞ ¼ dEτ=dX, mass mτ, and life-
time ττ. We find bτðEτÞ ¼ b0ρðEτ=GeVÞκτ , within
density ρ with b0¼−4.6×10−9GeVcm2g−1 and κτ¼5=4,
adequately approximates parametrizedMonteCarlo results of
[45] in our Eτ range of interest. This form is simple to
implement in solvingEq. (1) via an integrating factor solution
(e.g., [53]). After simplification, we obtain

dNτ

dEτ
¼ 1

−bτðEτÞ
exp

�
mτ

cττκτbτðEτÞ
�

×
Z

Emax

Eτ

dEQðEÞ exp
�
−
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cττκτbτðEÞ
�
: ð2Þ

For muons, the exponential terms vanish (τμ ≫ ττ) and
bμðEμÞ ¼ −αμ − βμEμ, using a stochastic loss fit [54]: αμ ¼
2.49 × 10−3 GeV cm2 g−1 and βμ ¼ 4.22 × 10−6 cm2 g−1.
We first consider downgoing events, where fluxes are

simpler. At PeVand greater energies, the differential νN CC
cross section dσCC=dy is strongly peaked at y ¼ 0 [55].
We use Eτ ¼ h1 − yiEν, approximating h1 − yi ¼ 0.8 ¼ q
(ignoring weak Eν dependence [55]),

QðEτÞ ≈ NAρφτðEτ=qÞσCCðEτ=qÞ=q; ð3Þ
where NAρ is the molar density of ice. We find this
adequately approximates the birth spectrum of taus (and
muons) using the differential cross section.
Emax relates the energy at the detector to a birth energy at

the surface. The particle range from arbitrary energy losses
can be inverted (see [56]), though the bðEÞ above allow for
analytic solutions. For taus, Emax

τ ¼ ½E−1=4
τ þ b0lðθÞ=4�−4,

where lðθÞ is the column depth to the surface at θ in
centimeters water equivalent (we assume a 2 km depth). For
muons, Emax

μ ¼ fexp½βμlðθÞ�ðαμ þ βμEμÞ − αμg=βμ.
For upgoing fluxes, effectively Emax→∞. We use l⊕ðθÞ

[57] for attenuation, e−τ⊕ , with τ⊕ ¼ NAl⊕ðθÞσtotðEνÞ. For
νe and νμ, σtot ¼ σνN , with σtot ¼ σν̄N for ν̄μ. For ν̄e, we
must add σν̄ee, which practically excludes a W− → μ−ν̄μ
origin of the 2.6 PeV track.
Upgoing ντ fluxes are complicated by regeneration,

decays of taus produced within Earth back into ντ. The
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FIG. 2. (Left) Spectra of upgoing muons (with Eμ entering detector) from neutrino models in Fig. 1. To deposit ∼2.6 PeV suggests
Eμ ≳ 8 PeV (vertical band), with a≳10 PeV energy of the νμ. (Right) The same for taus, denoting ranges of dominant entering-tau event
topologies. Through-going tau deposition of ∼2.6 PeV suggests Eτ ≳ 70 PeV (vertical band), a much larger Eν than a muon depositing
the same energy.
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total ντ number flux is conserved, although the spectrum is
distorted towards lower Eντ. We estimate the surviving ντ
flux by converting the interacting fraction for each Eντ into
a continuous distribution based on [44] (neglecting regen-
erated νμ=νe).
Super-Glashow fluxes.—Eν probed by a fully through-

going track event depends on the parent neutrino flavor. If
the 2.6 PeV track event is from a muon, estimating Edep in
∼1 km by integrating bμðEμÞ implies Eμ ≳ 8 PeV upon
entering IceCube (Fig. 2, left).
Compared to a muon with the same energy, the energy

loss rate of a tau is much smaller. Depositing Edep ¼
2.6 PeV in ∼1 km from bτðEτÞ alone (i.e., not including
any energy from the ντ interaction or tau decay, both
assumed to occur outside the detector) implies
Eτ ≈ 67 PeV. The light yield may even be less than a
muon of this Edep dependent upon photonuclear losses [46].
Since Eτ ≫ Eμ, the difference in neutrino energy required
for a through-going tau track is significant.
Figure 2 shows spectra of muons (left) and taus (right)

versus energy entering the detector. We see that an E−2.6
ν

spectrum similar to IceCube fits [4,5] (Fig. 1) implies a very
low rate of multi-PeV muons (and a negligible tau rate not
shown). A prompt PeV neutrino flux should be steeper with
a lower normalization than the E−2.6

ν model [5,58,59], with
< 0.01% probability of an atmospheric origin for the track
event [7–9]. A quantitative comparison with plausible
astrophysical models can provide flux levels yielding more
adequate rates.
The neutrino spectrum from pp scattering roughly traces

the proton spectrum within the source. Spectra from pγ
scattering, set by protons and target photons above the

photopion threshold, tend to be hard prior to being broken
and/or cutoff.
We consider spectra to examine super-Glashow neutrino

flux levels at Earth described as

φiðEνÞ ¼ fi½ðEν=EiÞαη þ ðEν=EiÞβη�1=η; ð4Þ

with α ¼ −1, β ¼ −3, broken at Ei ¼ 107, 108, and
109 GeV, corresponding to models φ7, φ8, and φ9, respec-
tively, with η ¼ −1 to smoothly mimic source variation and
cosmic evolution. One could instead use exponential cut-
offs, though the spectral peak, rather than high-energy tail,
mostly sets rates.
The φi spectra (Fig. 1) use equal peak normalization,

though each can be rescaled and/or summed for model-
dependent descriptions (e.g., [60–64]). Model φ7 peaks
near Eνμ for a minimal muon interpretation of the 2.6 PeV
track. It also approximates the pγ spectral shape in high-
energy-peaked BL Lac active galactic nuclei (AGN)
models, while φ8 resembles low-energy-peaked BL Lac
[11,61]. Model φ9 approximates the cosmogenic neutrino
spectrum from Greisen-Zatsepin-Kuzmin (GZK) pγ inter-
actions on the cosmic microwave background (CMB)
and φ7 approximates lower-energy proton interactions with
the extragalactic background light (EBL), which can be
combined for various cosmogenic scenarios (see
Supplemental Material [26]).
Multi-PeV rates.—Figure 2 shows upgoing muon and tau

spectra from φi models (Fig. 1). Muon and tau energy
deposition are more or less stochastic (e.g., [54,65]). For
concreteness, we consider Eμ > 5 PeV and Eτ > 50 PeV
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rates (and in Fig. 3). This still corresponds to tau energies
allowing traversal of IceCube before decaying.
Downgoing muons and taus are also relevant from the

angular region where background is low enough to safely
assume an astrophysical origin. A PeV muon flux is
expected from atmospheric cosmic-ray interactions. We
estimate this background relating the muon spectrum at the
surface to that reaching the detector accounting for energy
loss (e.g., [50]). Being concerned with PeV energies and
above, we use a spectrum approximating prompt muons
[66], dN=dEμ ∝ E−3

μ , neglecting muon bundles (discussed
by IceCube [66]). Figure 3 shows the angular distribution
of atmospheric muons with Eμ > 5 PeV at detector depth.
The ice effectively eliminates these ≲10° above the
“horizon”.
Figure 3 compares the angular distributions of

Eμ > 5 PeV muons and Eτ > 50 PeV taus. Table I shows
rates in 5 km2 yr, with showers for 5 km3 yr calculated
as in [48,49], including downgoing tracks within
−0.2 < cos θnadir < 0. Adding to upgoing rates yields
∼0.5–1 one total muonþ τ track for each of φ7, φ8, and
φ9, while E−2.6

ν remains small. We see for φ7 → φ8 → φ9

the tau-to-muon track ratio approaches unity.
The Fig. 2 spectra do not attempt to correct for IceCube

energy resolution. While for muons this is fairly straight-
forward, with reconstruction yielding better resolution at
high energies [65], for taus the correspondence between
energy and decay length complicates event topologies.
Figure 2 illustrates energies characteristic of entering-tau
classes: “lollipops,” in which a tau enters the detector and
decays (i.e., in its last ∼1 km), transitioning (via shading)
to “tracks” traversing the entire detector. Overestimating
Eτ, for instance, does not result in an increase in actual
range and would not change the topology.
The energies required to deposit ∼2.6 PeV calculated

here are indicative. Uncertainty in tau photonuclear losses
affects the visible signal [46] and a more thorough inves-
tigation should be carried out by IceCube. Even with a
more precise calculation, our conclusion will remain valid:

the energy of a tau must be much larger than that of a muon
in order to deposit the same amount of track energy. The
τ-track signal is often neglected (cf., [35]), and even if this
track turns out to favor a muon, we encourage optimizing
tools for through-going taus.
Implications and conclusions.—IceCube discovered

astrophysical neutrinos via an abundance of ≲PeV events.
Even a single highly energetic Eν ≳ 10 PeV event is a first
direct hint of neutrinos beyond the Glashow resonance,
though a deficit of ∼6 PeV Glashow showers precludes a
simple power-law description spanning these regimes. A
tau track event would give insight into the astrophysical
neutrino spectrum approaching Eν ∼ 100 PeV.
Whither Glashow?: A “successful” model should yield

sufficient track rates to account for the event depositing
2.6 PeV, without overproducing multi-PeV showers. The
rates from our nominal φi models are in plausible ranges to
source a track event; however, puzzles remain.
φ7 is the minimal model such to yield Eμ ≳ 5 PeV

muons, though disfavored at ≳99% by Glashow rates
unless the normalization is greatly reduced. This would
suppress track rates.
φ8 yields fewer muons than φ7, though much fewer

Glasgow events and a sizable τ-track fraction. We find via a
likelihood calculation that φ8 with a slightly decreased
normalization is most favored [26]. A tau track identifica-
tion would point to such a model.
φ9, though less likely for ∼2.6 PeV tracks, shower rates

are small. The upgoing tau spectrum peaks at
Eτ ∼ 200 PeV. We note an Antarctic Impulsive Transient
Antenna (ANITA) 600� 400 PeV shower event could be
an upgoing tau decaying above the ice, though at ∼20°
upgoing is perplexing [67]. While φ9 itself is viable, an
accompanying φ7-like GZK flux [26] disfavors many
combinations.
We find that E−2.6

ν is disfavored at the ∼90% level due to
low track rates. We also find that Glashow rates (Table I)
disfavor the best fit E−2.13

ν spectrum (cutoff at 10 PeV;
Fig. 1) from IceCube muon studies [9] at ≳99% [26].
Intermediate models E−2.13

ν expð−Eν=6.9 PeVÞ or E−2.6
ν

cutoff at 10 PeV perform no better (in Table I models
“E−2.13

ν e” and “E−2.6
ν c”, respectively; see [26]).

Importantly, examining muons alone cannot account for
the Glashow shower deficit, while pure power-law fits miss
spectral transitions.
In IceCube-Gen2 [68,69], Glashow shower rates can be

∼20× higher. Many through-going tau tracks in IceCube
would instead be contained, resolving more distinctive
topologies [36,41,46]. An extended surface array [70]
allows greater veto coverage for downgoing tracks [71].
Such combinations would discriminate [48,49,72,73]
between intrinsically small trans-Glashow fluxes and exotic
scenarios, such as cooled-muon models yielding neutrino
spectra from πþ decays with φν ≫ φν̄ and negligible
Glashow rates (see [48]).

TABLE I. Events in 5 km2 yr (tracks: Eμ > 5 PeV or
Eτ > 50 PeV; upgoing or downgoing within cos θnadir > −0.2)
and 5 km3 yr (showers: Eem > 5 PeV).

E−2.13
ν E−2.13

ν e E−2.6
ν E−2.6

ν c φ7 φ8 φ9

Upgoing μ 0.05 0.04 0.05 0.02 0.22 0.25 0.08
Down μ 0.05 0.04 0.08 0.01 0.30 0.46 0.25
Upgoing τ � � � � � � � � � � � � 0.01 0.08 0.07
Down τ � � � � � � � � � � � � 0.03 0.17 0.19

Track sum 0.1 0.08 0.13 0.03 0.56 0.96 0.59

ν̄ee shower 3.0 1.6 1.0 1.0 2.6 0.36 0.04
νe þ ν̄e CC 0.48 0.28 0.26 0.16 0.87 0.50 0.12
νþ ν̄ NC 0.01 0.01 0.05 0.0 0.18 0.42 0.16
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Standard model and beyond: While we quote event rates
for all low-background directions, the 2.6� 0.3 PeV track
comes from a relatively large angle below the horizon. This
becomes suspicious if similar tracks are not soon detected
from downgoing and shallower angles. We have seen that
the cutoffs in Fig. 3 angular distributions are flattened if
Earth opacity is decreased. This could arise from new
physics or if σCCðEνÞ saturates at ≳PeV due to small-x
QCD effects [74].
New-physics effects are also confronted; e.g., for

Lorentz invariance violating scenarios [75], the multi-
PeV track significantly extends previous bounds.
UHECR connections: For our neutrino emissivities [26],

we assume π�μ� decays yield six neutrinos for each
neutron of En ∼ 20Eν decaying to a proton with Ep ≈
En [48]. Taking optically thin sources, such as BL Lacs [61]
motivating φ7 and φ8, we calculate proton spectra [48],
imposing no cutoff to the high-energy β ¼ −3 spectrum.
We do not use φ9 (motivated by GZK neutrinos and thus
implicitly connected to UHECR).
Figure 4 shows the UHECR proton flux from φ7 and φ8

for zero evolution, as often assumed for BL Lacs, or cosmic
star formation rate [76–78] evolution. These fall below the
data [79–82], though φ8 is close at ≳1018 eV, where the
composition is light [83–85]. Fewer pions per neutron
would raise the flux [48], though saturation would leave no
room for UHECR mechanisms besides neutron escape
from IceCube sources.
Conclusions.—The Edep ≈ 2.6 PeV IceCube track event

implies the highest Eν interaction to date. If this track is
from a muon, it may indicate a ≳10 PeV neutrino energy.
Alternatively, we find through-going taus leaving such
tracks imply neutrino energy in the ∼100 PeV range,

giving a glimpse of astrophysical neutrinos from unexpect-
edly high energies.
Our calculations show such tracks are unlikely from

extending a soft neutrino flux yielding the ≳40 TeV
IceCube events. Fluxes like the ∼E−2.1

ν spectrum from
analyses of IceCube muons alone imply excessive Glashow
shower rates. We conclude that this combination of low
track rates from soft spectra and a deficit of ∼6 PeV shower
detections favors a new hard astrophysical neutrino flux
beyond the Glashow resonance.
The huge separation of parent νμ=ντ energies producing

a through-going track depositing the same energy high-
lights the importance of developing charged lepton flavor
identification for individual tracks. The models that we
considered suggest the IceCube multi-PeV track is the tip
of a super-Glashow iceberg and detectors such as IceCube
Gen-2 [68], ARIANNA [86], and ARA [87] can improve
prospects of addressing flavor ratios, the birthplaces of
UHECR, and more.
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