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2Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo, Italy

(Received 18 December 2017; revised manuscript received 14 March 2018; published 14 June 2018)

Typical elements of quantum networks are made by identical systems, which are the basic particles
constituting a resource for quantum information processing. Whether the indistinguishability due to
particle identity is an exploitable quantum resource remains an open issue. Here we study independently
prepared identical particles showing that, when they spatially overlap, an operational entanglement exists
that can be made manifest by means of separated localized measurements. We prove this entanglement is
physical in that it can be directly exploited to activate quantum information protocols, such as teleportation.
These results establish that particle indistinguishability is a utilizable quantum feature and open the way
to new quantum-enhanced applications.
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The discovery and exploitation of suitable resources is
one of the main aims in quantum information and compu-
tation processing [1]. Quantum-enhanced technologies
often employ identical systems (e.g., qubits, two-level
atoms, photons, electrons, quasiparticles), which are
bosons or fermions and constitute the elementary building
blocks (particles) of quantum networks [2–7]. However,
while for distinguishable particles an operational frame-
work to exploit their properties is well established by
individual operations on each particle [8], for identical
particles, which are indistinguishable and individually
unaddressable [9,10], the problem of their direct utilization
remains open. This is a main issue for the development of
quantum technology relying on identical particles.
A fundamental feature of composite systems, at the core

of quantum algorithms, quantum metrology, quantum key
distribution, and teleportation [7,11–13], is entanglement.
Albeit for systems of distinguishable particles entangle-
ment is well understood [8], for identical particles, it has
been the subject of debate, and special treatments to deal
with it have been introduced [9,10,14–29]. As a matter of
fact, for such systems, there is no general consensus both
on entanglement quantification and if, moreover, useful
entanglement may be obtained from the indistinguishability
of identical particles.
Absence of consensus is glaring already in the rather

simple situation of independently prepared identical par-
ticles, as elucidated in the following. One viewpoint is that,
irrespective of particles overlapping or not, their state is
always to be considered entangled, this entanglement being
not a matter of concern [9,10,14,30]. Various algebraic
operator methods instead assess their state as nonentangled
[17,23,31]. In contrast, when particles spatially overlap,

they can be separated by extraction procedures to get a final
state containing useful entanglement [32,33], which is in
turn inferred to be that of the initial state [33]. Under the
same spatial overlap condition, a recent particle-based
approach, resorting to the usual notions adopted for non-
identical particles such as von Neumann entropy, assesses
the state as entangled [28,29].
A way out from the impasse, whether or not particle

indistinguishability can be a source of useful entanglement,
would be provided by an operational framework to harness
identical particles. This is the aim of our Letter. We introduce
separated spatially localized (local) measurements to esti-
mate the operational entanglement in systems of independ-
ently prepared identical particles under generic spatial
overlap configurations.We then verify that this entanglement
can be exploited to enable teleportation under local oper-
ations and classical communications in a conditional way.
Operational entanglement.—Let us consider two inde-

pendently prepared nonidentical (distinguishable) qubits,
taken as particles, A and B: A is in a state with spatial wave
function ψ and internal state (pseudospin) ↑ and B is
in a state with spatial wave function ψ 0 and pseudospin ↓.
The pseudospin states may represent, for instance, compo-
nents �1=2 of a spin-1=2 particle, two energy levels of an
atom, and horizontal H and vertical V polarizations of a
photon. In the Dirac notation, this two-particle state is
jΨiAB ¼ jψ↑iAjψ 0↓iB ≡ jψ↑iA ⊗ jψ 0↓iB. Under individ-
ual operations on each particle, that is, under local
operations and classical communication (LOCC), this state
is manifestly separable and as such unentangled [8].
We now consider two independently prepared identical

particles in a state analogous to the previous one, which, in
the recent particle-based notation [28], is
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jΨi ¼ jψ↑;ψ 0↓i: ð1Þ

This state does not contain particle labels, is completely
characterized by the set of one-particle states, and cannot
be written as a tensor product of the one-particle states,
meaning that the vector state must be considered as a
whole. Within this formalism, the inner products between
states of the same dimensionality (two-particle probability
amplitude) and of different dimensionality are, respectively,
defined as [28]

hϕ0
1;ϕ

0
2jϕ1;ϕ2i ¼ hϕ0

1jϕ1ihϕ0
2jϕ2i þ ηhϕ0

1jϕ2ihϕ0
2jϕ1i;

hϕ0jϕ1;ϕ2i ¼ hϕ0jϕ1ijϕ2i þ ηhϕ0jϕ2ijϕ1i; ð2Þ

where ϕ0
1, ϕ

0
2, ϕ1, ϕ2, and ϕ0 are generic one-particle states

containing both spatial and pseudospin degrees of freedom
and η ¼ �1 with the upper or lower sign for bosons or
fermions. Using these equations, the reduced density
matrix of the state of Eq. (1) can be straightforwardly
obtained by partial trace onto an arbitrarily chosen one-
particle basis. This permits us to determine the von
Neumann entropy, which quantifies the entanglement of
the state in the same way as for nonidentical particles. Now,
because identical particles are individually unaddressable,
the partial trace must be performed on an arbitrary one-
particle basis defined in a given spatial region [28].
Our first step is to establish an operational framework

for determining the entanglement of the state jΨi, which
can be utilized as a tool for quantum information purposes
between separated locations. We use local measurements
of single-particle pseudospin states in separated localized
spatial regions L and R, as displayed in Fig. 1. This choice
allows one to exclude correlations between the distant
regions induced by the measurement process (measure-
ment-induced entanglement [10]). So, under this opera-
tional procedure, quantum indistinguishability due to
particle spatial overlap is necessary for finding nonzero

entanglement. We recall that the term “local” is here used
in the same sense as in quantum field theory, that is, a
localized region of space, different from its common
meaning for distinguishable particles in quantum informa-
tion theory, where it indicates an individual particle
(particle locality) [10,31] irrespective of its spatial distri-
bution. In this sense, the standard operational framework
for distinguishable particles based on LOCC becomes,
for indistinguishable particles, based on spatially localized
operations and classical communication (SLOCC).
We are ready to investigate the entanglement that comes

out within this operational framework. Taking the state jΨi
of Eq. (1), we name the probability amplitudes to find a
particle in the sites L and R as l ¼ hLjψi, l0 ¼ hLjψ 0i,
r ¼ hRjψi, and r0 ¼ hRjψ 0i. We perform the (basis-
independent) partial trace of jΨi on a one-particle basis
localized in L and successively project the resulting state
onto the site R, finally obtaining the reduced density matrix
(see Supplemental Material [34])

ρð1ÞLR ¼ 1

PLP0
R þ P0

LPR
ðPLP0

Rj↓ih↓j þ P0
LPRj↑ih↑jÞ; ð3Þ

where PL ¼ jlj2, P0
L ¼ jl0j2, PR ¼ jrj2, and P0

R ¼ jr0j2.
The von Neumann entropy Sðρð1ÞLRÞ ¼ ELRðΨÞ ¼
−Trðρð1ÞLRlog2ρ

ð1Þ
LRÞ gives the operational entanglement

ELRðΨÞ ¼ −
PLP0

R

PLP0
R þ P0

LPR
log2

PLP0
R

PLP0
R þ P0

LPR

−
P0
LPR

PLP0
R þ P0

LPR
log2

P0
LPR

PLP0
R þ P0

LPR
; ð4Þ

which represents quantum correlations between the pseu-
dospins of the particles observed by local measurements.
The amount of this entanglement jointly relies on the
probabilities to find the particles in the two localized sites L
and R.
Before analyzing this result in more detail, it is insightful

to compare it with the entanglement of the two-particle
state, namely, jΨLRi, obtained after projecting the pure
state jΨi of Eq. (1) onto the two-particle basis BLR ¼
fjL↑; R↑i; jL↑; R↓i; jL↓; R↑i; jL↓; R↓ig. The projector
onto the subspace spanned by the basis BLR is given by
the operator Π̂LR ¼ P

σ;τ¼↑;↓jLσ; RτihLσ; Rτj. The pro-
jected normalized two-particle pure state jΨLRi is then

jΨLRi ¼ Π̂LRjΨi
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΨjΠ̂LRjΨi
q

¼ lr0jL↑; R↓i þ ηl0rjL↓; R↑i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlr0j2 þ jl0rj2

p ; ð5Þ

obtained with probability

local
measurements

L R

FIG. 1. Operational entanglement. Two identical particles with
opposite pseudospins (internal states) have spatial wave functions
ψ , ψ 0 with a given degree of overlap. The entanglement between
pseudospins is operationally defined by local measurements in
two separated localized spatial regions L and R.
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PLR ¼ hΨjΠ̂LRjΨi ¼ PLP0
R þ P0

LPR ¼ jlr0j2 þ jl0rj2: ð6Þ

The entanglement of this state can be then assessed by
the standard concurrence for distinguishable particles [8]
because, under local measurements on L and R, any of the
states of the two-particle basis gives the same probability
amplitude of a separable product state, e.g., jL↑; R↓i≡
jL↑i ⊗ jR↓i [35]. Applying the general expression of
concurrence for a pure two-particle state (see Supplemental
Material [34]) to jΨLRi, one gets CðΨLRÞ ¼ 2jlr0l0rj=
ðjlr0j2 þ jl0rj2Þ. It is simple to see that the reduced density
matrix of the state jΨLRi, after partial trace on eitherL orR, is

equal to ρð1ÞLR of Eq. (3). The entanglement of formation [8]
Ef ¼ h½ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

p
Þ=2� with hðxÞ ¼ −xlog2x − ð1 − xÞ

log2ð1 − xÞ, corresponding to the concurrence CðΨLRÞ
above, coincides with the entanglement entropy of Eq. (4),
that is,

ELRðΨÞ ¼ EfðΨLRÞ: ð7Þ

This equality neatly highlights that, within the established
operational framework, the entanglement coming out from
the identical particle state jΨi of Eq. (1) is just the standard
entanglement of formation of the projected pure state jΨLRi
conditionally obtained as a consequence of operating on the
two separated local regions L and R. In this sense, the state
jΨLRi is the distributed resource state between L and R.
We now discuss these results in terms of spatial overlap

of the wave functions. With spatial overlap, we mean that
the particles can be found in the same region of space
and thus that the square moduli of the wave functions
(jψ j2, jψ 0j2) share a region of space where they both differ
from zero.
No spatial overlap: Wave functions ψ and ψ 0 are

spatially separated (nonoverlapping) and localized, respec-
tively, around L and R, thus P0

L ¼ PR ¼ 0. Equation (4)
gives no entanglement [ELRðΨÞ ¼ 0]; Eq. (5) gives
jΨLRi ¼ jL↑; R↓i. As expected, this is because the par-
ticles are spatially separated and locally addressed.
Partial spatial overlap: Wave functions ψ and ψ 0

partially overlap and different situations arise. When one
of the two local measurements on either L or R is
performed outside the overlap region (e.g., P0

L ¼ 0 or
PR ¼ 0), Eq. (4) gives zero entanglement [ELRðΨÞ ¼ 0].
If both measurements are outside the overlap region, the
result of the no spatial overlap (above) is clearly retrieved.
Instead, when local measurements occur within the overlap
region, entanglement between the particle pseudospins is
conditionally obtained, with probability PLR given by
Eq. (6), quantified by Eq. (4), and associated with the
state jΨLRi of Eq. (5). This analysis evidences that the
quantification of the operational entanglement of Eq. (4) is
not only an intrinsic property of the state, but depends
altogether on the structure of the state and on the modality
of measurements.

Complete spatial overlap: Thewave functions ψ and ψ 0
exhibit complete spatial overlap when the region where a
particle can be found with nonzero probability is the same,
and from Eq. (4), the operational entanglement
is always nonzero. It is maximum [ELRðΨÞ ¼ 1] when
PL ¼ P0

L ¼ jlj2 and PR ¼ P0
R ¼ jrj2 corresponding, from

Eq. (5), to the projected state jΨmax
LR i ¼ ðjL↑; R↓i þ

ηeiγjL↓; R↑iÞ= ffiffiffi
2

p
with probability, from Eq. (6), PLR ¼

2PLPR ¼ 2jlrj2. This probability attains its maximum
value, Pmax

LR ¼ 1=2, when jlj2 ¼ jl0j2 ¼ jrj2 ¼ jr0j2 ¼ 1=2.
This means that resource states with maximum entangle-
ment can be obtained with a variable efficiency.
An aspect to be clarified is whether the operational

entanglement ELRðΨÞ, as here defined, is physically
sensible.
Application.—We shall show this is the case by proving

that the entanglement so identified is utilizable in quantum
information protocols. To this aim, we choose the two
particles with spatial wave functions (modes) of Eq. (1) as

jψi ¼ ljLi þ rjRi; jψ 0i ¼ l0jLi þ r0jRi; ð8Þ

where jlj2 þ jrj2 ¼ jl0j2 þ jr0j2 ¼ 1 (see Fig. 2). They are
peaked in correspondence to the localized measurement
regions (L, R) and are always spatially overlapping, except
when either r ¼ l0 ¼ 0 or l ¼ r0 ¼ 0. The two-particle state
jΨi of Eq. (1) becomes

jΨi ¼ ll0jL↑; L↓i þ rr0jR↑; R↓i þ
ffiffiffiffiffiffiffiffi
PLR

p
jΨLRi; ð9Þ

where jΨLRi and PLR are given, respectively, in Eqs. (5) and
(6). From this equation, it is manifest that the distributed
resource state jΨLRi is a part of the global state. It is then
convenient to take the two wave functions of Eq. (8) to
maximize both operational entanglement and probability,
for instance, jψi ¼ jψ 0i ¼ jψ0i ¼ ðjLi þ jRiÞ= ffiffiffi

2
p

. With
this choice, the distributed resource state, available
with probability Pmax

LR ¼ 1=2, is the Bell state

local
measurements

L R

RL

FIG. 2. A paradigmatic system. Two identical particles with
opposite pseudospins have overlapping spatial wave functions
ψ , ψ 0 peaked in two separated localized regions L, R. Their
pseudospins are addressed by local measurements on L and R.
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jΨmax
LR i ¼ ðjL↑; R↓i þ ηjL↓; R↑iÞ= ffiffiffi

2
p

, whose relative
phase (η ¼ �1) is fixed by the particle species (bosons or
fermions). A quantum teleportation protocol [11,36] can be
realized as displayed in Fig. 3.
Two identical particles are prepared in the state jΨ0i ¼

jψ0↑;ψ0↓i and a third particle in an arbitrary state of
its pseudospin in the same laboratory where the site L is.
This third particle is distinguishable from the others for
being either of a different species or identical but separated
from the other particles, and its state can be written as
jφid ¼ ajL0↑id þ bjL0↓id, where L0 indicates a site acces-
sible together with L, yet separated from the latter (see
Fig. 3). From Eq. (9), one straightforwardly sees that,
excluding the terms when zero or two particles are in mode
L, the global initial state conditionally gives with proba-
bility Pmax

LR ¼ 1=2 the state (see Supplemental Material [34]
for details)

jφidjΨ0i →
1

2
½jΨðηÞ

L0Li1R þ jΨð−ηÞ
L0L iσRz

þ jΦðηÞ
L0LiσRx þ jΦð−ηÞ

L0L ið−iÞσRy �jφiR; ð10Þ

where jΨðηÞ
L0Li ¼ ðjL0↑idjL↓i þ ηjL0↓idjL↑iÞ=

ffiffiffi
2

p
and

jΦðηÞ
L0Li ¼ ðjL0↑idjL↑i þ ηjL0↓idjL↓iÞ=

ffiffiffi
2

p
are the Bell

states between the particle d and one of the two identical
particles, 1R is the identity operator in R, σRi (i ¼ x, y, z) are
the Pauli matrices, and jφiR ¼ ajR↑i þ bjR↓i is the target
state teleported in R. Equation (10) has the structure of the
standard teleportation protocol [36]. The intrinsically con-
ditional recipe to implement the protocol, starting from
the initial state, succeeds with probability Pmax

LR and is as
follows: (i) the agent Lucy in the laboratory containing L0,

L performs the Bell measurements and (ii) communicates
the outcomes to the agent Rob placed in R who (iii) per-
forms a given operation. If Lucy counts either zero or two
particles in L, she tells Rob to reject the procedure; in the

other cases, Lucy communicates the outcome ðjΨðηÞ
L0Li,

jΦðηÞ
L0Li, jΦð−ηÞ

L0L i, jΨð−ηÞ
L0L iÞ to Rob, who makes a correspond-

ing operation (1R, σRx , σRy , σRz ) to transform the state of its
particle into the desired one. This teleportation protocol,
although conditional, is purely quantum since it beats the
classical teleportation fidelity threshold 2=3 [8]. We stress
that the probabilistic nature of the process is not related to
the use of identical particles, but to the locality of
measurements, and the same would occur for entangled
distinguishable particles (see Supplemental Material [34]
for details). The above results prove the operational
entanglement ELRðΨÞ associated with independently pre-
pared identical particles is physical. This implies that any
other quantum protocol using SLOCC in the same system
can be analogously processed. The teleportation mecha-
nism here described basically differs from previous ones
using identical particles based on entangled particle number
states [37,38].
It is also worth noticing that the state jΨi ¼ jψ↑;ψ↓i as

given in Eq. (9) with ψ ¼ ψ 0 has the very same structure of
the final state jΨexti, which comes out from jΨi by the
extraction procedure via one-particle tunneling (beam-
splitting) transformation [28,33]. This fact strengthens
the idea that the extracted entanglement represents the
useful entanglement contained in the original state and is
not created by the extraction procedure [33].
The SLOCC framework within the particle-based

approach eventually allows the unambiguous quantification
of exploitable identical particle entanglement. In previous
works, focus has been on providing schemes, within a
linear quantum optics scenario, to generate entanglement
exploiting quantum indistinguishability of two identical
particles, rather than accessing intrinsic entanglement
directly [39]. Tentative steps towards an unambiguous
identification of an entangled state of two identical particles
have been also reported, formulated as the necessity of
having two suitable quantum variables that distinguish the
two identical particles [40]. These earlier works may in fact
be seen as setting the background for the achievement
reached here by SLOCC.
Conclusion.—In this Letter, we have found that indis-

tinguishability of identical elementary systems (particles)
can be a resource for quantum information processing. To
this aim, we have considered a state of two independently
prepared identical particles with generic spatial overlap
conditions. We have defined an operational framework
using spatially localized operations and classical commu-
nication (SLOCC). Under this framework, adopting a
particle-based approach to identical particles [28], we have
determined an operational entanglement ELRðΨÞ quantified

L R
L

x

y

z

0

R
L

L

arbitrary state 
conditionally 

teleported 
from L to R

standard teleportation protocol

FIG. 3. Teleportation scheme. Two identical particles with
opposite pseudospins have the same spatial wave function ψ0

peaked in two separated regions L and R. A third particle,
distinguishable from the others, is placed in L0 close to L, yet
separated from it and prepared in an arbitrary pseudospin state.
Direct application of the standard teleportation protocol in the
two laboratories individuated by (L0, L) and R allows the
conditional transfer of this arbitrary state from a laboratory to
another. The pseudospin of the particle in L0 is finally entangled
with the pseudospin of one of the two particles in L.
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by the von Neumann entropy. It coincides with the standard
entanglement of formation as obtained by local operations.
The operational entanglement crucially depends on the
relative spatial overlap between particle wave functions and
among these and measurement regions. We have proven
that the entanglement measure so obtained can be exploited
by SLOCC to conditionally enable quantum teleportation.
Particle indistinguishability is therefore revealed as a new
source of utilizable entanglement. This result, independent
of the particle species, occurs when particles are prepared
in pairwise orthogonal single-particle states, at variance
with the statement that such a state is nonentangled
[10,17,18]. It motivates studies under the case of non-
orthogonal pseudospins and further analyses about the
effect of indistinguishability as a source of quantum
features other than entanglement, such as coherence [41].
We remark that the particle-based approach here adopted

can be seen as complementary to another way to deal with
identical particle entanglement, known as the algebraic
operator approach [31]. The latter focuses on entanglement
between observables, while the former defines entangle-
ment in a typical scenario of quantum information theory,
so they look, in general, at different aspects of entangle-
ment. The door seems to be open to show the equivalence
of the two approaches when they address the same aspects.
Finally, our study indicates that a basic entangling

mechanism can be realized by simply bringing independent
identical particles with opposite pseudospins to spatially
overlap and then accessing the entanglement by SLOCC
measurements. In fact, as the LOCC framework permits the
unambiguous definition of entanglement of nonidentical
particles, the SLOCC framework within the particle-based
approach does the same for identical particles. Indeed, this
type of operational approach is what is needed to move
closer to the spirit of experiments. This property paves the
way to new quantum-enhanced applications in many
experimental contexts where identical particles are the
elements of quantum networks. For example, Bell experi-
ments [42] and teleportation protocol can be realized for
photons traveling along overlapping modes with polar-
izations locally detected at spatially separated places. A
straightforward implementation can be obtained by a
Hanbury Brown and Twiss setup [43] suitably modified
with orthogonal polarizers placed before detection. Such
linear optics realizations may be also reproduced in solid
state circuit quantum electrodynamics [44,45]. Bose-
Einstein and fermionic condensates are other natural fields
of application [7], where the particles can be prepared in
wells of a lattice and their wave functions adjusted by
external parameters like gate voltages, magnetic fields, and
laser beams [46,47].
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