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Machine learning, the core of artificial intelligence and big data science, is one of today’s most rapidly
growing interdisciplinary fields. Recently, machine learning tools and techniques have been adopted to
tackle intricate quantum many-body problems. In this Letter, we introduce machine learning techniques to
the detection of quantum nonlocality in many-body systems, with a focus on the restricted-Boltzmann-
machine (RBM) architecture. Using reinforcement learning, we demonstrate that RBM is capable of
finding the maximum quantum violations of multipartite Bell inequalities with given measurement settings.
Our results build a novel bridge between computer-science-based machine learning and quantum many-
body nonlocality, which will benefit future studies in both areas.
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Nonlocality is one of the most fascinating and enigmatic
features of quantum mechanics that denies any local
realistic description of our world [1–3]. It represents the
most profound departure of quantum from classical physics
and has been experimentally confirmed in a number of
systems through violations of Bell inequalities [4–19]. Any
quantum state that manifests nonlocality is necessarily
entangled, but the opposite is not true—there exist quantum
states that are entangled but at the same time admit a local-
hidden-variable description (thus they do not violate any
Bell inequality and cannot show nonlocality properties)
[20–22]. In this sense, nonlocality is a stronger property of
quantum states and detection of nonlocality is a sufficient
condition to demonstrate entanglement. Apart from this
fundamental difference, in practical applications nonlocal-
ity (rather than entanglement) has been shown to be an
indispensable resource for various device-independent quan-
tum technologies, such as secure key distribution [23–25] or
certifiable random number generators [26–30]. Thus, char-
acterizing and detecting nonlocality is one of the central
problems in both quantum information theory and experi-
ment. Here, we introduce machine learning, a branch of
computer science [31–33], to the detection of quantum
nonlocality (see Fig. 1 for a pictorial illustration).
For quantum many-body systems, whereas entanglement

has been extensively studied [34], nonlocality remains rarely
explored. Mathematically, it has been proved that the
complete characterization of classical correlations for a
generic many-body system is a non-deterministic polyno-
mial (NP)-hard problem [35]. Nevertheless, an incomplete
list of multipartite Bell inequalities with high-order correla-
tors has indeed been discovered for a long time [3]. More
recently, Bell inequalities with only two-body correlators
were constructed [36–40] and multipartite nonlocality has

been demonstrated experimentally in a Bose-Einstein
condensate by violating one of them [41]. This sparks a
newwaveof interest in the studyof nonlocality inmany-body
systems.
A particular question of both theoretical and experimen-

tal relevance is that for a given multipartite Bell inequality,

(a)

(b)

FIG. 1. (a) A sketch of the restricted-Boltzmann-machine
(RBM) representation of quantum many-body states. (b) A
pictorial illustration of the essential idea of machine learning
detection of Bell nonlocality in quantum many-body systems.
The set of all classical correlations forms a high-dimensional
polytope (yellow region), which is a subset of the quantum-
correlation set that consists of all possible correlations allowed
by quantum mechanics. The black line represents a tight Bell
inequality (facet of the polytope).
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how to obtain its maximal quantum violation? To tackle this
problem, one has to face at least two challenges. First of all,
the Hilbert space of a quantum many-body system grows
exponentially with the system size and a complete descrip-
tionof its state requires an exponential amount of information
in general, rendering the computation of the quantum
expectation value corresponding to the inequality a formi-
dably demanding task. Second, the measurement settings
for each party involved in a Bell experiment is arbitrary in
principle, making the problem even more complicated. In
fact, it has been shown that the computation of themaximum
violation of a multipartite Bell inequality is an NP problem
[42]. In this Letter, we will not attempt to solve this problem
completely, which is implausible due to the NP complexity.
Instead, we study a simplified scenario where the given
multipartite Bell inequality only involves a polynomial
number of correlators and the measurement settings for each
party are restricted (due to experimental requirements, for
instance) and preassigned. Based on Ref. [43], we show that
machine learningmay provide an unprecedented perspective
for solving this simplified, but still sufficiently intricate,
quantum many-body problem. Within physics, applications
of machine-learning techniques have recently been invoked
in various contexts [43–81], such as black hole detection
[59], gravitational lenses [60] and wave analysis [61,62],
material design [63], glassy dynamics [64], Monte Carlo
simulation [65,66], topological codes [82], quantum
machine learning [75], and topological phases and phase
transitions [45–54], etc.Here,we focusonone of the simplest
stochastic neural networks for unsupervised learning—
the restricted Boltzmann machine (RBM) [83–85] as an
example. We demonstrate, through four concrete examples,
that RBM-based reinforcement learning is capable of finding
the maximum quantum violations of multipartite Bell
inequalities with given measurement settings. Our method
works for generic Bell inequalities that involve a polynomial
number (in system size) of correlators, independent of
dimensionality, the order of the correlators, or whether the
correlators are short range or not. Our results showcase the
exceptional power of machine learning in the detection of
quantumnonlocality formany-body systems and, thuswould
provide a valuable guide for both theory and experiment.
To begin with, we consider a quantum system with N

spin-1
2
particles (qubits) Ξ ¼ ðσ1; σ2;…; σNÞ and use a

RBM to describe its many-body wave function [43]:

ΦMðΞ;ΩÞ ¼
X

fhkg
e
P

k
akσ

z
kþ
P

k0bk0hk0þ
P

kk0Wk0khk0σ
z
k ; ð1Þ

where Ω≡ ða; b;WÞ are internal parameters that fully
specify the RBM neural network and fhkg ¼ f−1; 1gM
denotes the possible hidden neuron configurations. It is
worthwhile to clarify that the RBM state defined above is
a variational state, with ΦMðΞ;ΩÞ specifying the complex
coefficient for each component. The actual quantum state

should be understood as jΨðΩÞi≡P
ΞΦMðΞ;ΩÞjΞi (up to

an irrelevant normalization constant). Any quantum state
can be approximated to arbitrary accuracy by the above
RBM representation, as long as the number of hidden
neurons is large enough [86–88].
We consider a standardBell experiment inwhichN parties

each can freely choose to perform one of K possible

measurements MðiÞ
k (i ¼ 1;…; N and k ¼ 0;…; K − 1)

with binary outcomes �1. We describe the observed corre-

lations by using a collection of correlators hMði1Þ
k1

� � �MðiαÞ
kα

i.
Classical correlations form a high-dimensional (exponential
inN) polytope P. Each facet ofP corresponds to a tight Bell
inequality and correlations that fall outside ofPwill violate a
Bell inequality and thus manifest nonlocality. We write the
Bell inequalities in a generic form: I ≥ BðcÞ, where I is a
function of correlators andBðcÞ is the classical bound.Within
this framework, our general recipe for machine learning
detection of nonlocality through violation of a given Bell
inequality is as follows: we begin with a random RBM state,
whose observed correlations may or may not fall inside P,
but typically donot violate thegiven inequality;we then use a
reinforcement learning scheme [43] to iteratively optimize
the internal parameters, such that the minimal expectation
value of I within quantum mechanics will be achieved. If
the minimal value is smaller than BðcÞ, the Bell inequality is
maximally violated with a given measurement setting and
nonlocality is detected. Alternatively, one can think about
the problem in another way: for a fixedmeasurement setting,
the corresponding Bell operator reduces to an effective
Hamiltonian and finding out the maximal violation is then
reduced to finding out the ground state energy, which can be
done with RBM-based reinforcement learning. A pictorial
illustration of the classical polytope, a tight Bell inequality,
and the essential idea of machine learning Bell nonlocality is
shown in Fig. 1(b).
One may also choose another measurement setting and

run the same process to obtain the maximal violation for
this setting. In order to obtain the maximal violation of the
Bell inequality for all measurement settings, one can just
scan all possible settings and do the same process repeat-
edly. An alternative and more efficient way is to regard all
the parameters that specify the measurements as variational
parameters as well (on an equal footing as the RBM
parameters Ω) and optimize them together with the
RBM parameters. But this is more technically involved.
Here, we will only focus on the former case with preas-
signed measurements for simplicity and leave the later
approach for future studies.
To show more precisely how this protocol works, we give

four concrete examples. The first two concern Bell inequal-
ities with short-range two-body correlators in one and two
dimensions, respectively.We compare our RBM results with
that fromexact diagonalization (ED) for smallN anddensity-
matrix renormalization group (DMRG) [89–91] for larger N
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for the 1D case, and find that they agree excellently.
This validates the effectiveness of our RBM approach.
The third and fourth examples are about Bell inequalities
with either all-to-all but two-body ormultipartite correlators.
The last three examples are beyond the capacity of the
traditional DMRG or EDmethods for large system sizes and
show a striking advantage of RBMs in detecting many-body
nonlocality.
Short-range two-body correlators.—Let us first

consider a 1D system with N (an even integer) qubits. A
Bell inequality involving only two-body correlators
with nearest-neighbor couplings has recently been
obtained [38]:

I1 ¼
XN=2−1

k¼0

ð1þ δÞI ðkÞ
even þ ð1 − δÞI ðkÞ

odd ≥ BðcÞ
1 ; ð2Þ

where I ðkÞ
even ¼

P
4
a¼0

P
3
b¼0 Λa;bðΔÞhMð2kÞ

a Mð2kþ1Þ
b i and

I ðkÞ
odd ¼ I ðkÞ

evenð2k → 2kþ 1Þ with ΛðΔÞ a four-by-three

matrix [92]; BðcÞ
1 is the classical bound depending on the

real parameters δ andΔ [93]. By choosing the measurement
settings properly [94], the corresponding Bell operator
reduces to a XXZ-type Hamiltonian: H ¼ P

N−1
k¼0 gk

ðδÞ½σ̂xkσ̂xkþ1 þ σ̂ykσ̂
y
kþ1 þ Δσ̂zkσ̂

z
kþ1�, where gkðδÞ ¼ 4½1þ

ð−1Þkδ�= ffiffiffi
3

p
, and σ̂x, σ̂y, and σ̂z are the usual Pauli matrices.

For this particular setting, the maximal quantum violation
of inequality (2) corresponds to the ground state energy of
H and can be calculated using DMRG [38]. Here, we use
the RBM-based reinforcement learning method to obtain
the same violation.
Our results are plotted in Fig. 2. In Fig. 2(a), we compare

our results with that from ED for N ¼ 20. As shown in this
figure, the RBM result matches the ED result very well
[95]. We find that the quantum expectation value of I1,

denoted by Qð1Þ
v , decreases approximately linearly as we

increase Δ. There is a critical value Δ ≈ 2.4, after which no
quantum violation will be observed. In Fig. 2(b), we show
the convergence of the RBM learning and compare the
obtained results with that of DMRG. We find that the initial
random RBM states typically do not violate the Eq. (2), but

as the learning process goes on, Qð1Þ
v will decrease and

begin to violate the inequality after a certain critical
iteration number. As the iteration number increases further,

Qð1Þ
v quickly converges to the DMRG value, validating the

effectiveness of the RBM method. Figure 2(c) shows the

converged Qð1Þ
v as a function of N. We find that Qð1Þ

v

decreases linearly with increasing N for the chosen
parameters ðδ;ΔÞ ¼ ð0.9; 2Þ. For Δ ¼ 2, the slope for

Qð1Þ
v is smaller than that of BðcÞ

1 ; thus, the larger N is
the stronger the quantum violations. For Δ ¼ 3, no viola-
tion is observed for all N [95], which is consistent with the
results in Ref. [38].

Following similar procedures in Ref. [38], the Bell
inequality defined in Eq. (2) can be generalized to a 2D
honeycomb lattice (see the Supplemental Material [95]
for details):

I2 ¼
X

τ¼fr;b;gg

X

τ−link
JτI ðτÞ ≥ BðcÞ

2 ; ð3Þ

where I ðτÞ is defined similar to I ðkÞ
even, Jτ (τ ¼ fr; b; gg) is a

real parameter characterizing the strength of the τ link

of the honeycomb lattice, and BðcÞ
2 is the corresponding

classical bound [95]. We choose similar measurement
settings as in the 1D case and calculate the quantum
violations of Eq. (3) through RBM-based learning. We
plot a partial of our results for a system size as large as
N ¼ 14 × 12 in Fig. 2(d) [95]. We find that, for the given

parameters, the quantum expectation value Qð2Þ
v exhibits

roughly a linear decreasing as Jr increases, with a slop
smaller than that of the classical bound. When Jr is small,
no quantum violation is observed. However, there is a
critical value of Jr ≈ 0.9, after which quantum violations
show up and nonlocality is detected. We remark that, unlike

(a) (b)

(c) (d)

FIG. 2. RBM-based reinforcement learning of many-body Bell
nonlocality. The red dashed lines represent the classical bounds,
the regions below which show quantum nonlocality. (a), (b), and
(c) show the results for the 1D case and we have fixed δ ¼ 0.9 for
simplicity. (a) A comparison between results from RBM and
exact diagonalization for N ¼ 20. (b) The obtained quantum

expectation value Qð1Þ
v as a function of the iteration number for

N ¼ 100. For this particular learning process, Qð1Þ
v begins to

cross the classical bound BðcÞ
1 after 65 iterations, and all the RBM

states thereafter violate Eq. (2) and thus show many-body

nonlocality. As the iteration number increases, Qð1Þ
v converges

quickly to the value computed from DMRG [95]. (c) RBM

learned Qð1Þ
v as a function of N for Δ ¼ 2. (d) RBM learned Qð2Þ

v

as a function of Jr for Eq. (3) of the 2D case [95].
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in the 1D case, the DMRG method may not be applicable
here due to the exponential growing of the bond dimension
with ∼

ffiffiffiffi
N

p
.

All-to-all two-body correlators.—As the third example,
we consider the following Bell inequality with all-to-all
two-body correlators [36]:

I3 ¼ −2S0 − S01 þ
1

2
ðS00 þ S11Þ ≥ BðcÞ

3 ; ð4Þ

where the one- and two-body correlators are defined as Sa¼P
N
k¼1hMðkÞ

a i and Sab¼
P

N
k≠lhMðkÞ

a MðlÞ
b i (a, b ¼ 0, 1),

and the classical bound BðcÞ
3 ¼ −2N. This inequality has

been used in a recent experiment to demonstrate many-body
nonlocality of about 480 atoms in a Bose-Einstein con-
densate [41]. For permutationally symmetric measurement
settings, its quantum violations were numerically studied
in Ref. [36]. Here, we find that, using the RBM approach,
one can obtain the same maximal violations readily
if one chooses a permutation-invariant neural network.
More interestingly, we find that the RBM approach
also works for the cases where the permutation symmetry
is released. To this end, we consider a scenario where

the measurement settings are chosen as MðkÞ
0 ¼ σz and

MðkÞ
1 ¼ cos θkσz þ sin θkσx, where θk are random rotation

angles drawn from some uniform distributions [95]. We
mention that in a real experiment, the measurement angles
will never be exact due to various control imperfections or
system noises. For instance, in quantum dot spin-qubit
experiments, the precision of single qubit rotations is
typically limited due to charge fluctuations [96] and
Overhauser noise [97,98]. Thus, our consideration of
random measurement settings is of both theoretical and
experimental relevance. In Fig. 3(a), we show the quantum

expectation value Qð3Þ
v corresponding to I3 as a function of

the iteration number for a typical random sample of θks,
for a system size as large as N ¼ 60, which is inaccessible

with ED. It is clear that Qð3Þ
v decreases as the learning

process continues and becomes smaller than the classical
bound at a critical iteration number. For smaller system sizes,
we have compared our RBM results with that from ED and
find that they agree excellently [95].
Multipartite correlators.—To show that our RBM

approach also works for Bell inequalities with multipartite
correlators, we consider the following Bell inequality [99]:

I4¼−hMð1Þ
0 Mð2Þ

0 � � �MðNÞ
0 i−hMð1Þ

1 Mð2Þ
0 � ��MðNÞ

0 i

þ 1

N−1

XN

k¼2

½hMð1Þ
0 MðkÞ

1 i−hMð1Þ
1 MðkÞ

1 i�≥−2; ð5Þ

with measurements [100]: Mð1Þ
0 ¼ σ̂z, Mð1Þ

1 ¼ cos θσ̂x þ
sin θσ̂z, MðkÞ

0 ¼ σ̂z and MðkÞ
1 ¼ σ̂x for all k ¼ 2;…; N.

Using RBM-based reinforcement learning, we have com-
puted the quantum violations of Eq. (5) and part of our
results are plotted in Fig. 3(b) [95]. From this figure, we
find that Eq. (5) is always violated when θ ≠ π=2 and
the maximal violation is achieved at θ ¼ 0 or π. When

θ ¼ π=2, Mð1Þ
0 ¼ Mð1Þ

1 ¼ σ̂z and the first party actually
has only one measurement; hence, no quantum violation
can be obtained. In addition, from our numerical results we
also find that the maximal violation of Eq. (5) is always
−2

ffiffiffi
2

p
, independent of the system size [95]. This can be

understood from the observation that Eq. (5) is in fact
reminiscent of the Clauser-Horne-Shimony-Holt inequality
[103], whose maximal quantum violation has proved to be
bounded by 2

ffiffiffi
2

p
[104].

It is worthwhile to clarify that our RBM approach may in
principle only converge to some local minima. This is a
common issue in machine learning and might be overcome
[31]. For the examples shown in this Letter, the RBM
approach seems always to find the global minimum (its
accuracy can be systematically improved by increasing the
number of hidden neurons or iterations in the training
process). We stress the difference between DMRG and our
RBM approach. Generally speaking, DMRG is limited to
short-range 1D problems and is not applicable to Bell
inequalities with multipartite correlators (since for this case
there is no apparent way to write down a local matrix
product operator) [90]. In stark contrast, our RBM
approach does not suffer from these limitations, as explic-
itly demonstrated by the last three examples. In addition,
entanglement is not a limiting factor for the efficiency of
the RBM representation of quantummany-body states [81].
Thus, we expect that RBM can be used to detect many-
body nonlocality for quantum states with massive (e.g.,
volume-law) entanglement as well. This implies another
unparalleled advantage of the RBM approach, when
compared with traditional methods, such as DMRG,
[105] projected entangled pair states (PEPS), or [106]
multiscale entanglement renormalization ansatz (MERA),

(b)(a)

FIG. 3. (a) RBM-learned quantum expectation value Qð3Þ
v as a

function of the iteration number, for a typical random sample of
measurement angles (see Ref. [95]). (b) RBM-learned quantum

violations Qð4Þ
v of Eq. (5) as a function of measurement angle θ.

In (a) and (b), the system sizes are chosen to be N ¼ 60 and
N ¼ 20, respectively.
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which are limited to problems with low entanglement. We
also note that one may use other types of neural networks
(e.g., deep Boltzmann machine [68] or feedforward neural
networks [107], etc.) with different learning algorithms
to detect many-body nonlocality. A complete study on
detecting nonlocality with different neural networks would
not only bring new powerful tools for solving complex
problems in the quantum information area, but also provide
helpful insight in understanding the internal data structures
of the networks themselves. We leave this interesting and
important topic for future investigation.
Discussion and conclusion.—Finding out experimen-

tally friendly Bell inequalities for a given many-body
system is a challenging problem, since in general the
complexity of characterizing the set of classical corre-
lations scales exponentially with the system size. In the
future, it would also be interesting to study how machine
learning can provide valuable ideas in designing optimal
Bell inequalities for many-body systems. Particularly,
recent experiments in cold atomic [108] and trapped ion
[109] systems have realized programmable quantum
simulators with more than fifty qubits and observed
exotic quantum dynamics and phases transitions. It is
highly desirable to find appropriate Bell inequalities that
can be used in these experiments to demonstrate many-
body nonlocality. We believe that machine learning
will provide valuable wisdom in tackling this problem
as well.
In summary, we have introduced machine learning to the

detection of quantum nonlocality in many-body systems
based on Ref. [43]. Our discussion is mainly focused on
the RBM architecture, but its generalizations to other
artificial neural networks are possible and straightforward.
Through four concrete examples, we have demonstrated
that RBM-based reinforcement learning shows remarkable
power in computing quantum violations of generic multi-
partite Bell inequalities. Our results not only opened a door
for machine learning detection of Bell nonlocality, but also
clearly demonstrate the great potential of machine learning
techniques in solving other quantum many-body problems
that are beyond the scope of DMRG and other traditional
methods, which would benefit future studies across quan-
tum information, condensed matter physics, machine learn-
ing, and artificial intelligence.
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