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Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies
have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is
known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug
resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of
a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates
resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows
fixation for small migration rates. Interestingly, there exists an intermediate regime—characterized by
comparable rates of migration and mutation—in which the rate of fixation can be either accelerated or
decelerated depending on the spatial profile, even when spatially averaged selection pressure remains
constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread
and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may
lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of
drug resistance.
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Drug resistance is a rapidly growing public health threat
and a central impediment to the treatment of cancer,
viruses, and microbial infections [1–4]. The battle against
resistance has been largely fought at the molecular level,
leading to an increasingly mature understanding of its
underlying biochemical and genetic roots. At the same
time, evolutionary biologists have long recognized resis-
tance as a fundamentally stochastic process governed by
the complex interplay between microbial ecology and
evolutionary selection. The past decade, in particular,
has seen a significant surge in efforts to develop and
understand evolution-based treatment strategies to forestall
resistance [5–16]. While the vast majority of this work
focuses on spatially homogeneous environments, a number
of recent studies, both theoretical and experimental, have
demonstrated that spatial heterogeneity in drug concen-
tration can dramatically alter the evolutionary dynamics
leading to resistance [16–24]. On a practical level, the
picture that emerges is somewhat bleak, as resistance
evolution is dramatically accelerated in the presence of
spatial gradients in drug concentration [18–20,22–24] or
heterogeneous drug penetration [17,21]. Interestingly,
however, recent work shows that this acceleration can be
tempered or even reversed when the mutational pathway
(i.e., the genotypic fitness landscape) leading to resistance
contains fitness valleys [18], which are known to inhibit
evolution [25–28]. Unfortunately, because the fitness land-
scape is a genetic property of the cells themselves, the
potential for accelerated evolution appears to be “built in,”

making it difficult to combat in a treatment setting.
However, these results raise the question of whether non-
monotonic profiles of tunable properties of the system—for
example, the spatial selection pressure—might also have
the potential to slow evolution, even when the mutational
pathway lacks the requisite fitness valleys.
Evolution in natural or clinical settings takes place in

heterogeneous environments characterized by spatial fluc-
tuations in multiple factors, including drug concentrations,
nutrients, temperature, and pH, all of which potentially
affect cellular growth. Understanding evolution and ecol-
ogy in such spatially extended systems is a challenging and
long-studied problem [29–33]. Recent studies have dem-
onstrated rich dynamics when intercellular interactions are
defined on heterogeneous complex networks [34–36],
where spatial structure can (for example) promote invasive
strategies in tumor models [35] or modulate fixation times
on random landscapes [34]. Remarkably, in the weak
selection limit, evolutionary dynamics can be solved for
any population structure [36], providing extensive insight
into game-theoretic outcomes on complex networks. In
addition, theoretical tools from statistical physics have
proven useful for understanding spatiotemporal dynamics
in spatially structured populations in a wide range of
contexts, including biologically inspired Monte Carlo
models [18], toy models of source-sink dynamics [19],
stepping-stone models of spatial pattern formation [37],
models of dispersion [38–42], and Moran metapopulation
models [43–45]. In a similar spirit, here we use stochastic
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models of evolution along with theoretical tools from
statistical physics to investigate the effects of spatially
heterogeneous fitness pressures on the evolution of resis-
tance. In contrast to previous models defined on hetero-
geneous networks at the single-cell level, here we consider
metapopulations connected via simple topologies and
investigate the effects of spatial structure imposed by
arbitrary distributions of selection pressure. While several
elegant approaches exist for studying these models in
particular limits (e.g., with a center manifold reduction)
[43–45], here we instead use a classical mean first passage
time (MFPT) approach based on adjoint equations to
reduce the calculation of mean fixation times to a simple
collection of linear equations that can be easily solved
for arbitrary spatial distributions of selection pressures.
This method also allows us to find the fixation times from
arbitrary initial states, which are often difficult to compute
using other methods. Using this approach, we show that
resistance evolution can be either accelerated or decelerated
by spatial heterogeneities in selection pressure, even when
the spatially averaged selection pressure remains constant.
In addition, we demonstrate that tuning the spatial distri-
bution of selection pressure can dramatically slow fixation
when the subpopulations of resistant mutants are not
uniformly distributed in space.
To investigate resistance evolution on a spatially hetero-

geneous landscape, we consider a stochastic Moran-like
model [46] of a finite population (N) consisting of ðN − n�Þ
wild-type cells with fitness r0 ≤ 1 and n� drug-resistant
mutants with fitness r�, which we set to unity without loss
of generality. Note that this model does not include a fitness
cost to resistance (i.e., r� ≥ r0 for all conditions). At each
time step, cells are randomly selected for birth and death,
with cells of higher fitness (in this case, resistant cells)
chosen preferentially for division [see Supplemental
Material (SM) for full model with transition rates [47]].
Wild-type cells can mutate to become drug resistant at
rate μ; we neglect reverse transitions to the drug-sensitive
state. To incorporate spatial heterogeneity, we consider
a simple spatially extended system with M distinct micro-
habitats, each containing N cells; cells are allowed to
migrate at rate β between connected microhabitats
[Fig. 1(a)]. At each time t, the state of the system is
characterized by the vector n�ðxiÞ whose components
correspond to the number of mutants in each discrete
microhabitat xi ¼ 0; 1;…;M − 1. The system evolves
according to a continuous time master equation,

dPm

dt
¼

X

m0
Ωmm0Pm0 ; ð1Þ

where m and m0 denote different states of the system and Ω
is a NM × NM matrix whose entries depend on the wild-
type fitness value r0ðxiÞ at each spatial location xi (see SM
[47]). For tractability, we restrict our analysis to M ¼ 3,

which is the simplest model that allows for potentially
nonmonotonic fitness landscapes, such as fitness peaks
and fitness valleys. In what follows, we refer to the vector
sðxiÞ≡ 1 − r0ðxiÞ as the spatial profile of selection pres-
sure, as it measures the difference in fitness between
resistant and wild-type cells in each microhabitat (xi).
Intuitively, large values of sðxiÞ correspond to regions
where the resistant mutant has a significant evolutionary
advantage over the wild-type cells (e.g., regions of high
drug concentration).
While Eq. (1) is difficult to solve explicitly, it is

straightforward to calculate quantities that describe the
evolution of resistance in various spatial profiles. The
model consists of a single absorbing state—the fully
resistant state [n�ðxiÞ ¼ N for all xi]—and the system will
asymptotically approach this state. To characterize the
speed of fixation in the presence of different spatial profiles
sðxiÞ, we calculate the mean first passage times between
states, which obey [48,49]

FIG. 1. (a) Stochastic model for emergence and spread of
resistant cells (red) in a spatially extended population of
sensitive cells (green). Each spatial habitat (xi) contains N total
cells. Cells migrate at a rate β between neighboring habitats, and
sensitive cells mutate at a rate μ to resistant cells. The spatial
distribution of selection pressure is characterized by a back-
ground value (s0) and a peak height (δs). (b) Example plot of the
mean fixation time for different landscapes with μ ¼ 5 × 10−3,
β ¼ 0.08, N ¼ 25, and hsi ¼ 0.167. The time to fixation can be
either faster (green) or slower (red) than the spatially homo-
geneous landscape with δs ¼ 0. Inset: Selection landscapes for
δs ¼ −0.2 (left) and δs ¼ 0.5 (right).

PHYSICAL REVIEW LETTERS 120, 238102 (2018)

238102-2



−1 ¼
X

m0≠mf

Tðmfjm0ÞΩm0;mi
; ð2Þ

where TðmfjmiÞ is the mean time required for a system
initially in state mi to first reach state mf. We take mf to be
the fully resistant state and solve the coupled set of linear
equations for TðmfjjÞ, where j is an index that runs over all
initial states. In particular, when j is the fully wild-type
population [n�ðxiÞ ¼ 0 for all xi], we refer to the MFPT as
the mean fixation time τf.
In the case of a single microhabitat, the mean fixation

time τf increases as selection pressure decreases (see SM
[47]). In the spatially extended case, τf would also be
expected to increase when the selection pressure is globally
decreased, though it should also depend on the spatial
structure of the specific selection profile sðxiÞ. To inves-
tigate the impact of spatial structure alone, we compared τf
across different selection profiles sðxiÞ, all of which were
characterized by the same spatially averaged selection
pressure, hsi ¼ P

isðxiÞ=M. For simplicity, we begin with
a symmetric profile characterized by a background selec-
tion pressure s0 in the edge habitats and a relative peak
of height δs in the center habitat [Fig. 1(a)]. This toy
landscape has an average selection pressure of hsi ¼
s0 þ δs=M, and the parameters s0 and δs are constrained
by the fact that 0 ≤ sðxiÞ ≤ 1 at all spatial locations. We
vary δs systematically to explore different selection pro-
files, which can include a single selection pressure valley
(δs < 0), a homogeneous landscape (δs ¼ 0), or a single
selection pressure peak (δs > 0).
Interestingly, we find that modulating heterogeneity

(δs) can increase or decrease τf for certain choices of
migration and mutation rates, even when hsi is held
constant [Fig. 1(b)]. More generally, we find that the β-μ
plane can be divided into three nonoverlapping regions
where the homogeneous landscape (1) leads to the smallest
value of τf, (2) leads to the largest value of τf, or (3) does
not correspond to an extremum τf [Figs. 2(a) and 2(b)]. In
the latter region, heterogeneity often modulates the fixation
time by only a few percent, but we do find larger effects in
the high and low migration limits (i.e., on the edges) of the
intermediate regime (Fig. S1 of SM [47]). In addition, as
we increase β for a fixed value of μ, τf smoothly transitions
from being minimized at δs ¼ 0 to being maximized near
δs ¼ 0 (Fig. S1 [47]). We find empirically that the fixation
time can be dominated by τ1, the time required to achieve
a small population of mutants [Fig. 2(c), rightmost panel],
or τ2, the time required for this small population to
achieve fixation [Fig. 2(c), leftmost panel]. However, in
many cases—particularly those close to the intermediate
region where fixation can be accelerated or slowed by
heterogeneity—both timescales contribute to the dynamics.
While we restrict ourselves primarily to N¼25, hsi ¼ 1=6,
and to symmetric landscapes, we find qualitatively similar

results (i.e., 3 distinct regions) for other values of hsi
(Fig. S2), N (Fig. S3), as well as for permuted selection
profiles (Fig. S4), globally coupled profiles (Fig. S4), and
monotonic (gradient) selection profiles (Fig. S5) (see
SM [47]).
To intuitively understand these results, we developed a

simple analytical approximation for τf [see SM, Eq. (S16)
[47]] valid in the limit μ, β ≪ 1, where the fixation time is
dominated by the arrival times of individual mutants (either
from de novo mutation or from migration from a neighbor-
ing vial that has achieved fixation). In this limit, the three

(a)

(b)

(c)
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FIG. 2. Spatial heterogeneity can speed or slow fixation
depending on the rates of migration (β) and mutation (μ).
(a) Phase diagram illustrates region of parameter space where
the homogeneous landscape leads to a maximum (light blue),
minimum (dark blue), or intermediate (medium blue) value of the
in fixation time. MFPT calculations were performed for the
indicated values of β and μ and for −0.2 ≤ δs ≤ 0.5 in steps of
0.1. (b) Sample fixation curves in the regions where heterogeneity
slows fixation (left-hand panel, diamonds; β ¼ 10−4, μ ¼ 10−4)
or accelerates fixation (right-hand panel, squares; β ¼ 5 × 10−2,
μ ¼ 10−4). Solid curves indicate analytical approximations.
(c) Gray shaded region indicates fixation time τf from every
initial state [n�ðx0Þ; n�ðx1Þ; n�ðx2Þ], where n�ðxiÞ is the initial
number of mutants at position xi. Red curves show mean fixation
time over all initial states with a given total mutant fraction.
Vertical arrows represent time to achieve a total mutant fraction
of 1=5 (τ1, blue) and time to go from that fraction to fixation (τ2,
green). Left to right panels: Increasing β at a fixed value of
μ ¼ 10−4; plots correspond to symbols on phase diagram in (a).
N ¼ 25 and hsi ¼ 0.167 in all panels.
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habitats achieve fixation one at a time, and fixation in a
single habitat is approximated as an exponential process
with rate λðs; nfixÞ ¼ Nðμþ βnfixÞPfixðsÞ, where nfix is the
number of neighboring vials that have already achieved
fixation and Pfix ¼ s½1 − ð1 − sÞN �−1 is the probability of a
single mutant fixing in a habitat with selection pressure s
(see SM [47]). The approximation captures the qualitative
features of fixation over a wide range of μ and β (Fig. S7)
and, in many cases, provides excellent quantitative agree-
ment as well [see, for example, Fig. 2(b), left-hand panel
and Fig. S7 [47]].
In general, the analytical approximation for τf is alge-

braically cumbersome. However, in the limit β ≪ μ, the
approximation reduces to the expected maximum of three
independent exponential random variables, leading to
τf ≈ τmax ¼ λ−10 þ λ−11 þ λ−12 − ðλ0 þ λ1Þ−1 − ðλ0 þ λ2Þ−1−
ðλ1 þ λ2Þ−1 þ ðλ0 þ λ1 þ λ2Þ−1, with λi ≡ λ(sðxiÞ; 0) (see
SM for details [47]). In this limit, the three-vial system
acts effectively as three independent systems, with the
overall fixation time corresponding to the slowest
fixation. After rewriting τmax in terms of hsi and δs, it is
straightforward to show that ð∂τmax=∂δsÞjδs¼0 ¼ 0 and
ð∂2τmax=∂δs2Þjδs¼0 > 0, indicating that the homogeneous
landscape (δs ¼ 0) minimizes the fixation time, consistent
with results of the exact calculation [Fig. 2(b), left-hand
panel]. Intuitively, increasing heterogeneity reduces the
minimum selection pressure in the spatial array, which in
turn slows the expected maximum fixation time among the
three habitats.
By contrast, in the limit μ ≪ β, τf reduces to the

expected minimum of three independent exponential
processes, leading to τf ≈ τmin ¼ ðλeffÞ−1, where λeff ≡
λ0 þ λ1 þ λ2. In this limit, the fixation time is dominated
by dynamics in the vial that first achieves fixation; the
remaining vials then rapidly achieve fixation due to fast
migration. For large but finite N, the fixation time τmin is
maximized at δs ¼ 0, indicating that heterogeneity always
accelerates fixation, again consistent with the exact calcu-
lation [Fig. 2(b), right-hand panel]. In this limit, the
effective rate of fixation λeff is increased for all δ ≠ 0, as
heterogeneity decreases fixation time in the vial with the
fastest average fixation.
Our results indicate that a judicious choice of selection

pressure profile can potentially slow fixation of de novo
mutants. In addition, selection pressure profiles can be
optimized to mitigate the effects of resistance once it has
emerged. One advantage of the MFPT approach [i.e.,
solving Eq. (2)] is that it provides fixation times starting
from all possible initial states, making it straightforward to
apply to cases where a resistant subpopulation already
exists. Specifically, consider a situation where a resistant
subpopulation has arisen at a particular spatial location.
Is it possible to choose the spatial distribution of selection
pressure—for example, by spatially dosing the drug—to
minimize the time to fixation from this state? Intuitively,

the goal is to delay the onset of treatment failure as long as
possible. As an illustrative example, we consider a pop-
ulation consisting of N=2 mutants in the center microhabi-
tat and calculate the mean time to fixation for different
spatial profiles of selection pressure. We then find the
optimal value for δs—that is, the heterogeneity correspond-
ing to the spatial landscape with the slowest fixation time—
in different regions of parameter space [Fig. 3(a)]. The
specific choice of spatial profile significantly impacts the
time to fixation from the initial resistant subpopulation
[Fig. 3(b)]. We observe two distinct regions of parameter
space that lead to two very different dosing regimes
[Fig. 3(c)]. For μ sufficiently large relative to β, slowest
fixation occurs when we maximize the amount of drug in
the center microhabitat (δs ¼ 0.5, white region). On the
other hand, at large migration rates, fixation is optimally
slowed by maximizing the amount of drug in the two
microhabitats without any initial mutants (δs ¼ −0.2).

FIG. 3. (a) Schematic: A subpopulation of resistant mutants
(red) arises at a particular spatial location. How can one choose
the spatial distribution of selection pressure (i.e., drug con-
centration) to maximize the time to fixation? (b) Heterogeneity
can significantly speed or slow fixation starting from an initial
resistant subpopulation consisting of N=2 cells in the center
habitat (μ ¼ 10−5, β ¼ 8 × 10−3). Points, exact calculation;
solid line, analytical approximation. (c) The optimal spatial
heterogeneity (δs) leading to the slowest mean fixation time
from an initial state of ð0; N=2; 0Þ. Depending on the specific
parameter regime, the optimal selection pressure profile is the
one with the largest possible valley consistent with hsi (black)
or the one having the largest possible peak (white). Red solid
line, analytical approximation. (d) Relative magnitude of τδsmax

f
(mean fixation time at maximum value of δs) and τδsmin

f (mean
fixation time at minimum value of δs) as mutation rate
decreases at constant migration rate [green arrow, (c)]. Points,
exact calculation; solid line, analytical approximation. N ¼ 24
and hsi ¼ 0.167 in all panels. Analytical approximation is
given in Eq. (S24) of SM [47].
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In contrast to the case with no initial mutants (e.g., Fig. 2),
fixation time is never maximized by choosing the homo-
geneous profile. To further characterize these two regimes,
we compare the fixation times from a maximally peaked
landscape (δs is maximized) to that from a landscape with a
large valley (δs is minimized). The selection landscape that
leads to the slowest fixation rapidly becomes suboptimal as
mutation rate is decreased at constant β [Fig. 3(d)].
Our model is a dramatic oversimplification of the biologi-

cal dynamics leading to drug resistance. Practical applications
will require analysis of more realistic models and may call
for spatial optimizations with different constraints—for
example, limits on the maximum allowable local selection
pressure. Nevertheless, the simplicity of our model allows
for a thorough characterization of fixation time over a wide
range of parameters, and its behavior is surprisingly rich.
Importantly, our results do not require a fitness cost of
resistance or a genetic fitness valley, and they predict that
spatial heterogeneity in drug concentrations would impact
populations of motile and nonmotile cells in opposing ways,
even when mutation rates are relatively similar. While
heterogeneity is likely to accelerate evolution for populations
of motile bacteria, similar to what is observed in experiments
with E. coli [22,24], our results predict slowed evolution for
less motile cells (e.g., the nosocomial pathogen E. faecalis
[50]) or cells with rapid mutation rates. Perhaps most
interestingly, our results suggest counterintuitive, spatially
optimal profiles for slowing the spread of resistance sub-
populations. In the long term, these results may lay the
groundwork for optimized, spatially resolved drug dosing
strategies for mitigating the effects of drug resistance.
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