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Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to
competition between neighbor alignment and noise-induced decoherence. However, very little is known of
how the quenched (i.e., time-independent) disorder impacts active motion. Here we report on the effects
of quenched disorder on the dynamics of self-propelled point particles. We identified three major types
of quenched disorder relevant in the context of active matter: random torque, force, and stress. We
demonstrate that even in the absence of external fluctuations (“cold active matter”), quenched disorder
results in nontrivial dynamic phases not present in their “hot” counterpart. In particular, by analyzing when
the equations of motion exhibit a Hamiltonian structure and when attractors may be present, we identify in
which scenarios particle trapping, i.e., the asymptotic convergence of particle trajectories to bounded areas
in space (“traps”), can and cannot occur. Our study provides new fundamental insights into active systems
realized by self-propelled particles on natural and synthetic disordered substrates.
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Active matter has become a research topic of broad
scientific interest, from soft matter physics to chemistry,
biology, and engineering [1,2]. Active self-propelled motion
leading to large-scale collective behavior was discovered in
living and synthetic systems across scales, from microscopic
in vitro cytoskeletal extracts [3–5], suspensions of motile
bacteria [6,7], motile cell cultures [8,9], colloidal rollers
[10–12], and surfers [13], to macroscopic animal herds and
bird flocks [14,15]. Theoretical understanding of active
matter in terms of nonequilibrium statistical mechanics
was achieved by the analysis of discrete particle models
(so-called Vicsek-type models) [16,17], phenomenological
hydrodynamiclike equations [18,19], or by the asymptotic
reduction of the probabilistic Boltzmann equations for
particle distribution functions to the Ginzburg-Landau-type
equations for the corresponding order parameters [20–22].
Both simulations and the analytic theory led to the overall
consensus that the emergence of order is the result of
aligning interaction between the neighbors and the mis-
aligning effect of the external noise, e.g., due to thermal
fluctuations or bacterial run-and-tumble motion.
External (time-dependent) noise is not the only, and, more

importantly, not necessarily the main source of misalignment
and disorder in active systems. Self-propelled particles
moving on a substrate such as colloidal rollers [10,11],
vibrated granular disks [23], gliding myxobacteria [24], etc.
can be affected by the substrate imperfection and roughness;
flights of birds can be influenced by interfering obstacles or
by topographical features. Surfaces with a random pattern of
local adhesive strength that affect locomotion of motile

eukaryotic cells can be designed, for example, by micro-
contact printing [25]. Prepatterned surfaces and obstacles, as
well as light fields, have already been used in experiments to
control and manipulate active particles [26]. Recent experi-
ments with Quincke rollers demonstrated that a random
distribution of pinned obstacles can prevent a formation
of polar flows, passing through a state where the rollers
self-organize their motion into channels [27]. Surprisingly,
at a theoretical level still very little is known about how
quenched disorder, i.e., time-independent or “frozen” noise,
affects the statistical properties of collective motion in active
systems. Combining simulations and analytical arguments it
has been shown that in the presence of a quenched disorder
and a dynamical noise active particles can exhibit subdiffu-
sion [28], and that by increasing quenched disorder, the
onset of self-organized polar flows can be suppressed
[29,30], as was found experimentally in Ref. [27]. It was
also shown that there exists an optimal (dynamical) noise
that maximizes collective motion in disordered environments
[29,30]. On the other hand, it has been found that volume
exclusion can lead to jamming, frozen states, and moving
chains [31–34].
In contrast, particle dynamics with quenched disorder is

one of the main topics in equilibrium statistical mechanics;
it also has enormous practical importance. The motion of
Abrikosov vortices in type-II superconductors is the main
reason for the dissipation and breakdown of the non-
resistive state. Immobilization (or pinning) of the vortices
by natural and artificial random defects is the main strategy
to fight the dissipation [35]. Pinning of magnetic domains
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by defects results in a permanent magnetic moment in
ferromagnetic materials [36]. On the other hand, a glassy
behavior is typically modeled as the motion of a particle in
a random energy landscape [37]. Particle driven in a
random potential by an external bias can be described in
terms of a “shaking temperature” [38]: moving random
pinning landscape generates fluctuations with the overall
effect equivalent to a thermal Langevin force. The concept
of shaking temperature successfully explained the dynamic
melting of the vortex lattice in type-II superconductors
[38]. However, the analogy between thermodynamic tem-
perature and the shaking temperature appears to be not
complete even in equilibrium systems. Further studies
revealed that in contrast to thermal fluctuations, driven
vortex lattice flows through well-defined, elastically
coupled, static channels [39].
Here, by examining the simplest (or barebone) model of

active matter, we investigate the effect of quenched disorder
on the motion of self-propelled particles. We identified
three main types of spatial disorder termed, correspond-
ingly, random torque (RT), random force (RF), and random
stress (RS): RT involves a (local) random turning of the
active particle, RF aligns the particle to a local prescribed
direction, and RS aligns the particle to a local nematic
director; how to implement in practice such disorders are
discussed at the end of the Letter. We show that the
equations of motion of noninteracting active particles in
RT disorder exhibit a Hamiltonian structure, preventing the
presence of attractors, and leading to diffusive particle
motion. We indicate that by adding particle interactions the
system becomes dissipative, making possible the presence
of attractors and thus of “particle trapping”: i.e., the
asymptotic convergence of particle trajectories to bounded
areas in space. For RF and RS disorder, there is a lack of
Hamiltonian structure for both interacting and noninter-
acting active particles, and for large disorder strengths
particle trapping occurs. In summary, cold active matter is
characterized by the presence of a new dynamic phase not
present in “hot” system: after a long transient, all particles
end up moving in a few closed orbits, i.e., “traps,” and the
system gets pinned; this new phase is observed at large
enough disorder strength for interacting particles in RT
disorder, as well as for both noninteracting and interact-
ing particles subject to either RF or RS disorder.
Model.—We consider a continuum-time model for N

self-propelled particles moving in a two-dimensional dou-
ble-periodic domain of size L with quenched disorder. In
the absence of particle-particle interactions, the dynamics
of the ith active particle is described by

_xi ¼ v0VðθiÞ; _θi ¼ Rsðxi; θiÞ; ð1Þ

where the dot denotes temporal derivative, xi corresponds
to the position of the ith particle, and θi is related to its
propulsion direction, which is given by VðθiÞ≡ ( cosðθiÞ;

sinðθiÞ), and v0 is the active speed. The term Rsðxi; θiÞ
represents the quenched disorder, with s ¼ RT, RF, RS
defined as

RRTðxi; θiÞ ¼ AΓðxiÞ; ð2Þ

RRFðxi; θiÞ ¼ A sin (αðxiÞ − θi); ð3Þ

RRSðxi; θiÞ ¼ A sin (2ðαðxiÞ − θiÞ); ð4Þ

where A is the disorder strength, ΓðxÞ is a random
(time-independent) function such that −1 ≤ ΓðxÞ ≤ 1,
and αðxÞ is a random (time-independent) phase, with
−π ≤ αðxÞ ≤ π. In order to define the quenched fields
ΓðxÞ and αðxÞ, the space is divided into squared cells of
sizeΔx × Δx in such a way that any point in the space x has
an associated cell. A random value of either Γ or α is
assigned to each cell using a uniform distribution in the
interval ½−1; 1� and ½−π; π�, respectively. This implies that
ΓðxÞ—and similarly for αðxÞ—is such that hΓðxÞic ¼ 0,
and hΓðxÞΓðx0Þic ¼ 0 for x and x0 belonging to different
cells, where h� � �ic denotes an average taken over all cells.
For x and x0 belonging to the same cell, it reduces to the
second moment of the above-defined top-hat distribution,
hΓðxÞΓðx0Þic ¼ 1=3. To account for particle-particle inter-
action, an extra term Iq can be added to the equations of
motion:

_xi ¼ v0VðθiÞ; _θi ¼ Iqðxi; θiÞ þ Rsðxi; θiÞ; ð5Þ

where Iqðxi; θiÞ represents the interaction of particle i with
its neighbors defined by

Iqðxi; θiÞ ¼
1

nðxiÞ
X

jxi−xjj<1
sin (qðθj − θiÞ); ð6Þ

where q defines the symmetry of the velocity alignment,
with q ¼ 1 for polar and q ¼ 2 for apolar alignment, and
nðxiÞ denotes the number of neighbors of particle i within
unit distance. Equations have been nondimensionalized in
such a way that the unit of distance corresponds to the
radius of interaction and the time unit to the interaction
strength. The model defined by Eq. (5) provides a gener-
alization of Vicsek-like models [16] (see also Ref. [40])
with quenched disorder.
Note that due to the Hamiltonian structure of the

equations for noninteracting particles with RT disorder
and absence of time-dependent noise, see below, simula-
tions have to be performed with a symplectic integrator
scheme; see Ref. [41] for details. It is a matter of debate
[42,43] on whether the long-time behavior of the discrete-
time Vicsek model with dynamic noise depends on the
so-called backward [16] and forward update rule [44,45].
Here, we provide solid mathematical arguments that show
that for quenched disorder only the forward update rule,
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given its symplectic structure, provides a correct descrip-
tion. These arguments, however, cannot be applied to the
abovementioned (dynamic noise related) debate.
Results.—Noninteracting particles subject to RT disorder

can be mapped to a classical problem of the motion of an
electron in a random magnetic field ΓðxÞ. To demonstrate
that, one takes a time derivative of Eq. (1), for s ¼ RT, that
yields after some simple algebra to

ẍ ¼ _x × ( − AΓðxÞz0); ð7Þ

where z0 is the unit vector in z directions. In two
dimensions, Eq. (7) is a completely integrable system since
it has two integrals of motion: the Hamiltonian H and the
linear momentum magnitude j _xj2 ¼ v20. The Hamiltonian
structure of Eq. (7) implies that it cannot have an attractor.
Consequently, trajectories cannot converge asymptotically
to “preferred areas” of the system, i.e., trapping cannot
occur, and particle motion is expected to be diffusive.
Numerical simulations confirm that mean squared displace-
ment (MSD) scales linearly with time t, Fig. 1(a). To
evaluate the diffusion coefficient of these particles, we
employ the concept of shaking temperature Tsh [38]. We
assume that the disorder strength is small, A ≪ 1. Since the
particle explores the space at a speed v0, i.e., xðtÞ ≈ v0tu0,
where u0 is an arbitrary oriented unit vector, we approxi-
mate θiðtÞ ¼ A

R
t
0 dt

0Γ(xðt0Þ) ≈ A
R
t
0 dt

0Γðu0v0t0Þ, assum-
ing that all paths are statistically equivalent. Using the
above expression for θi, we arrive at

hθ2i ðtÞi ¼ 2A2

Z
t

0

dt0
Z

t0

0

dt00hΓðu0v0t00ÞΓðu0v0t0Þi

≈ 2
A2hΓðxÞ2icΔx

v0
t ¼ 2Tsht: ð8Þ

Thus, similar to thermal systems, the shaking temperature
is defined via the disorder correlation Tsh ¼ A2hΓðxÞ2ic
Δx=v0. Note that it is required that Δx > 0. Thus, we define
the angular diffusion coefficient Dθ:

Dθ ¼ Tsh ¼
A2Δx

3v0
: ð9Þ

The corresponding translational diffusion coefficient Dtr
can be obtained as

Dtr ¼
v20
2Dθ

¼ 3v30
2A2Δx

: ð10Þ

In contrast to the case of temporal noise where Dtr ∼ v20,
here the diffusion coefficient is proportional to v30. The
predictions by Eq. (10) are verified in simulations [41].
Remarkably, the Hamiltonian structure is lost in the

interacting case. Interactions formally make the system
dissipative. In particular, Eq. (5) for q ¼ 1 (polar align-
ment) can be written in the dissipative Landau-Lifshitz-
Gilbert form:
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FIG. 1. Noninteracting particles. (a)–(c) Mean squared displacements (MSD) versus time t for RT, RF, and RS disorder, respectively,
for different disorder strengths A. The black, red, green, and blue curves correspond to A ¼ 0.05, 0.1, 0.3, 0.5 in (a) and A ¼ 0.1, 0.5,
1.0, and 5.0 in (b) and (c). (d)–(f) Particle positions for RT, RF, and RS disorder, respectively, at t ¼ 106 starting from the same initial
condition using five different quenched landscapes (A ¼ 0.5); particles of the same color move on the same quenched landscape. For RT
(d), particle trajectories do not (asymptotically) converge on preferred areas, while for RF and RS, (e) and (f), particles are localized in
closed orbits (“traps”): see magnifications of traps in (e) and (f) where each square corresponds to a cell Δx × Δx containing a time-
independent noise value. (g) A trap visited by particles starting from five different random initial conditions (color coded) that moved on
the same quenched landscape (A ¼ 0.5). (h) The histogram displays the number of particles that landed on the trap shown in (g) from the
five different random initial conditions. Parameters are N ¼ 900, L ¼ 30, v0 ¼ 0.1, and Δx ¼ 0.5.
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ẍi ¼ − _xi × AΓðxiÞz0 þ
1

v20nðxiÞ
_xi ×

X
jxi−xjj<1

_xi × _xj: ð11Þ

This renders possible the presence of attractors and thus the
trapping of particles. Numerical simulations confirm that
with both polar and apolar interactions, particles asymp-
totically become localized into traps, as evidenced by the
crossover from a diffusive behavior (MSD ∝ t) to a
seemingly saturated value of the MSD; see Figs. 2(a)
and 2(d). Note that many timescales may be present: first,
the time to find an attractor (crossover from diffusive to
saturationlike behavior of MSD) and then a slow (loga-
rithmic) dynamics inside the attractor.
For RF and RS disorder, the equations of motion do

not have a Hamiltonian structure, even in the absence of
interactions, and thus trapping of particles is possible. In
the limit of weak disorder, A ≪ 1, and for finite time and
systems, these two disorders can be approximated to that of
RT. To see that, we make an expansion in A for the angle
θ ¼ θ0 þ Aθ1 þ A2θ2 þ � � �. Substituting this expansion
into Eq. (1), for s ¼ RF, one obtains θ0 ¼ const and
_θ1 ¼ A sin (αðxÞ − θ0)þOðA2Þ. If the angle relation time
τ ¼ 1=A is large compared to the disorder decoherence
time τ0 ¼ Δx=v0, the problem can be mapped to the RT
situation with an effective disorder ΓeffðxÞ ¼ sin (αðxÞ).
Numerical simulations with noninteracting particles in RF
and RS disorder confirm that for small values of A normal
diffusion is observed, while for large values of A, as
expected by the absence of a Hamiltonian structure, particle
trapping occurs, Figs. 1(b) and 1(c). Figures 1(e) and 1(f)
show some typical examples of traps. From these figures, it
is evident that traps are closed orbits found by the active
particles that expand over several cells of area Δx × Δx,
each of them containing a time-independent noise value.
It is worth mentioning that the system behavior strongly

depends on the initial condition and the specific quenched
noise landscape that is studied. Figures 1(e) and 1(f)

illustrate the sensitivity to quenched noise realization by
showing particle positions resulting from five different
numerical experiments, all starting with exactly the same
initial conditions, and each of them using a different, but
statistically identical, quenched disorder landscape. To
study the sensitivity to the initial condition, we focus on
a single trap (in a given quenched noise landscape) and
compute the number of particles that end up in the trap
starting from different initial conditions, Fig. 1(h). All this
implies that for time-independent disorder there is no
unique steady state.
Note that including the interparticle interactions for RF

and RS disorder does not restore a Hamiltonian structure
and thus attractors may be present and particle trapping
possible. Numerical simulations with interacting particles,
with either polar or apolar alignment, in RF and RS
disorder confirm that particle trapping occurs, Figs. 2(b),
2(c), 2(e) and 2(f). The pinned states (or traps) for
interacting particles under RF and RS are similar to those
in Figs. 1(e) and 1(f), but with an important difference:
interacting particles form high-density clusters that move
along the closed orbits (see Ref. [41]). Furthermore,
neighboring traps, each of them with a moving cluster,
become coupled via the interacting term Iq leading typi-
cally to a remarkably slow dynamics where eventually
particles fuse and occupy one of the two initial traps, and
the behavior of the MSD seems to be (once inside traps)
logarithmically slow, i.e., MSDðtÞ ∝ logðtÞ (see Ref. [41]
for movies and further details).
We indicate that due to quenched noise disorder,

long static channels, similar to that predicted for a driven
vortex lattice [39], emerge. For finite systems, such long
static channels may span the entire system and lead to a
(finite-size-related) ballistic regime.
Finally, it is instructive to consider the limiting case

of instant alignment with the disorder, corresponding to
A → ∞, even if it is out of reach numerically. For s ¼ RF,
this limit implies that θ ¼ αðxÞ and, thus,
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(a),(d), RF (b),(e), and RS (c),(f) disorder and various disorder strength values A. For movies, see Ref. [41]. Parameters are N ¼ 900,
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_x ¼ v0 cos (αðx; yÞ); _y ¼ v0 sin (αðx; yÞ): ð12Þ

The conservation of the magnitude of the linear momentum
j _xj2 ¼ v20 implies that Eq. (12) cannot have fixed points. On
the other had, rigorous topological arguments state that
Eq. (12) cannot have periodic orbits either. Indeed, if the
disorder function is continuous, then, according to the
index theorem [46], in two dimensions any periodic orbit
would contain at least one fixed point. Similar consider-
ations apply to the RS disorder. Consequently, in the limit
of A → ∞, we expect to recover diffusive behavior.
Concluding remarks.—The presented results can be

extended in many directions. While we identified three
primary types of disorder (RT, RF, RS), it is likely that in
experimental realizations the quenched disorder is not
reduced to a specific type but rather a combination of
them. Another important aspect is the presence of a time-
dependent noise. We anticipate that, depending on the
disorder type, time-dependent noise may lead to nontrivial
effects, in particular to intermittent trapping of the particles,
and thus to the possibility of subdiffusion.
Another intriguing question relates to the limit of A ≫ 1,

in relation to the limiting case given by Eq. (12). The
Sinai diffusion model for the motion of a particle in a one-
dimensional random potential is a paradigm of glassy
dynamics [47]. The model given by Eq. (12) is an
interesting generalization of the Sinai diffusion problem
to two dimensions. In the limit Δx → 0, Eq. (12) will
represent an example of “active glass” and logarithmically
slow dynamics at zero temperature. In summary, the limit
A ≫ 1 may unveil interesting new physics.
Finally, depending on the active system in hand, various

approaches can be used to engineer a specific disorder type.
For example, in bacterial suspensions, the RT disorder can
be implemented by varying the hydrodynamic slip length
via surface treatment [48,49]; RS can be realized via a
random director pattern on a surface, similar to that in
Refs. [50–52]. RF can be achieved in the roller system
[10,12] via a substrate height modulation.

F. P. was supported by the Agence Nationale de la
Recherche via project BactPhys, Grant No. ANR-15-
CE30-0002-01. I. S. A. was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences,
Division of Materials Science and Engineering.

[1] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[2] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323

(2010).
[3] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z.

Dogic, Nature (London) 491, 431 (2012).
[4] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K.
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