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Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk
phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show
that three types of SCB universality are realized in the dimerized Heisenberg models at the (2þ 1)-
dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary
transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state
generally leads to the multicritical special transition, even though the latter is precluded in classical phase
transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by
the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical
exponents violate the results of the scaling theory and thus seriously challenge our current understanding of
extraordinary transitions.
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Introduction.—Universality is a central concept in phys-
ics, and plays a key role in the study of phase transitions.
The universality suggests that critical exponents in sponta-
neously symmetry-breaking transitions are determined by
the broken symmetry and the spatial dimensions.
Moreover, the critical exponents in different universality
classes obey the same scaling relations.
When a system with boundaries undergoes a phase

transition, physical quantities measured on the surface also
show singularities with universal behavior. This is called
surface critical behavior (SCB) [1]. Approaching the bulk
critical point, both the surface and the bulk correlation
lengths diverge, and the long-range order also sets in on the
surface. Besides its direct relevance to experiments on
realistic materials with boundaries, the SCB is also theo-
retically appealing. Similar to the bulk critical points, the
SCB is also classified according to the universal properties,
which are characterized by the surface critical exponents.
The surface universality classes are closely related to the
bulk ones, and are even richer than the latter because of the
extra tunability on the surface. In other words, there is a
one-to-many correspondence between the bulk and the
surface universality classes.
In classical phase transitions, different surface univer-

sality classes can be realized by tuning the surface coupling
strength. The phase diagram of the prototypical three
dimensional (3D) Ising model is sketched in Fig. 1
[1,2]. If the coupling in the surface layer Js is comparable
to the bulk coupling J, the surface remains disordered

throughout the bulk disordered phase; thus the surface
singularities at the bulk Tc are purely induced by the bulk
critical state. This is called “ordinary transition.” If
Js=J ≫ 1, the surface undergoes a 2D phase transition
at a higher temperature Tcs > Tc. At the bulk phase
transition, the surface exhibits extra singularities, which
is called “extraordinary transition.” The surface Tcs and the
bulk Tc merge at a fine-tuned surface coupling strength J�s ,
where both the surface and the bulk states are critical. This
multicritical point is called “special transition.”
For 3D OðnÞ (n ≥ 3) models, however, the 2D surface

alone cannot have OðnÞ symmetry breaking at any finite
temperature becauseof the proliferationof gapless excitations
[3,4]. Therefore, it is widely believed that there are neither
extraordinary nor special transitions in this case [1,5,6].
SCB also sets in at quantum critical points (QCPs)

[9,10]. In this work, we study the SCB of the dimerized
spin-1=2 antiferromagnetic (AFM) Heisenberg models on
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FIG. 1. Schematic phase diagram of the 3D classical Ising
model with boundaries. J and Js are the bulk and the surface
coupling strengths, respectively.
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the square lattice (Fig. 2). These models host ð2þ 1ÞD
O(3) QCPs between the gapped dimerized phases and the
Néel ordered phases [11,12]. We realize all three types of
SCB of 3D O(3) universality class in these models with
different surface configurations.
First, we show that gapped surface states in the bulk

disordered phase generally result in the ordinary transition
of the 3D O(3) class at the bulk QCP. This is consistent with
previous works on one of the QCPs of the decorated square
lattice [10].
Second, we show that when the bulk disordered phase

has gapless surface states, the SCB belongs to a universality
class different from the ordinary transition. This SCB
universality class was first discovered in the decorated
square lattice Heisenberg model and was taken as a feature
of the symmetry-protected topological (SPT) order [10]. In
the present work, the same SCB universality recurs in the
columnar model with the surface cut-2 [Fig. 2(a)], where
the surface spins form an AFM Heisenberg chain and are
gapless in the bulk disordered phase. It indicates that this
SCB universality class is a generic consequence of gapless
surface states. The coexistence of the surface and the bulk
critical states at the QCP suggests that this SCB universality
class corresponds to the multicritical special transition of
the 3D O(3) class, even though the latter is precluded in
classical phase transitions.
Third, an extraordinary transition is realized in the

staggered dimerized model with the surface cut-2
[Fig. 2(b)]. A ferrimagnetic order forms on the surface
both in the bulk disordered phase and at the QCP. The
surface critical exponents at the extraordinary transition are
found to be ηk ¼ 1.004ð13Þ and η⊥ ¼ −0.5050ð10Þ, which
are inconsistent with previous theoretical predictions based
on a general scaling theory and the large-n expansion
[13,14], and even violate the scaling relation in Eq. (6).
Therefore, the theory of extraordinary transitions must be
substantially modified to account for our finding.
Models and method.—In this work, we study the SCB of

the dimerized spin-1=2 Heisenberg models on the square
lattice (Fig. 2). The Hamiltonians are given by

H ¼ J
X

hi;ji
Si · Sj þ J0

X

hi;ji0
Si · Sj; ð1Þ

in which J and J0 are the coupling strengths of the weak and
the strong bonds (denoted by thin and thick lines),
respectively. The strong bonds either form a columnar
pattern [Fig. 2(a)] or a staggered pattern [Fig. 2(b)], which
are called the columnar model and the staggered model,
respectively.
In both models, the ground state has long-range Néel

order if J0=J ≃ 1. For J0=J ≫ 1, the ground state is
adiabatically connected to the direct product state of the
spin singlets on the strong bonds, thus is disordered with a
nonzero energy gap. Previous studies have unveiled a
continuous quantum phase transition from the disordered
phase to the Néel ordered phase in each model [11,12]. The
QCP of the columnar model lies at J0=J ¼ 1.9096ð4Þ, and
unambiguously belongs to the 3D O(3) universality class
[11]. The QCP of the staggered model at J0=J ¼ 2.5196ð2Þ
is more controversial. The first numerical simulation found
the critical exponents to be ν ¼ 0.689ð5Þ and η ¼ 0.09ð1Þ,
which significantly deviate from the 3D O(3) universality
class [12]. However, this conclusion was challenged in later
works and the deviation was attributed to strong irrelevant
corrections [15–17].
In this work, we study the SCB of both models. We use

the periodic boundary condition along one direction and the
open boundary condition along the other direction to
expose the surface. Two different surface configurations
are considered in each model, which cut along the dashed
lines shown in Fig. 2 (denoted by cut-1 and 2, respectively).
The projective quantum Monte Carlo algorithm in the

valence bond basis [18,19] is adopted. The calculations are
performed at the QCPs unless stated otherwise. The lattice
size is L × L, with 8 ≤ L ≤ 80. 107 Monte Carlo sweeps
are performed for each surface configuration.
The squared staggered magnetization of the surface spins

m2
s1 and the spin correlation functions CkðL=2Þ and

C⊥ðL=2Þ are adopted to characterize the SCB. CkðrÞ
and C⊥ðrÞ are equal-time spin correlation functions with
one point fixed on the surface and the other point moving
parallel (CkÞ or perpendicular to (C⊥) the surface. They
obey the following finite size scaling forms [2],

m2
s1L ¼ cþ L2yh1−3ðb0 þ b1LyiÞ; ð2Þ

jCkðL=2Þj ¼ L−1−ηkðb0 þ b1LyiÞ; ð3Þ

jC⊥ðL=2Þj ¼ L−1−η⊥ðb0 þ b1LyiÞ; ð4Þ

in which yh1 is the scaling dimension of the surface
staggered magnetic field h1, and ηk and η⊥ are the surface
anomalous dimensions. The constant term c in Eq. (2)

J J'

1 2

J J'

1

2

FIG. 2. Columnar (left) and staggered (right) dimerized spin-
1=2 Heisenberg models on the square lattice. J and J0 are the
exchange coupling strengths on the two types of bonds, and
J0 > J. In each model, two types of open boundaries (denoted by
cut-1 and 2) cutting along the two dashed lines are considered in
this work.
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encodes the short-range nonuniversal contribution to m2
s1.

bi’s are nonuniversal fitting parameters. yi is the irrelevant
correction exponent. In practice, we find that setting
yi ¼ −1 yields good fitting to all numerical results.
The critical exponents yh1, ηk, and η⊥ are expected to

obey the following relations [20,21]:

ηk ¼ d − 2yh1; ð5Þ

2η⊥ ¼ ηk þ η; ð6Þ

in which d ¼ 3 is the spacetime dimension, and η is the
bulk anomalous dimension. These relations serve as con-
sistency check to our simulations.
Ordinary transition.—The surface cut-1 in both models

do not break any strong bonds; thus the surface states
remain gapped in the bulk disordered phases. The
power-law correlation on the surface at the QCP is purely
induced by the critical bulk states.
The numerical results of m2

s1, CkðL=2Þ, and C⊥ðL=2Þ
are shown in Fig. 3. In the columnar model with surface
cut-1, the finite-size scaling yields yh1 ¼ 0.840ð17Þ,
ηk ¼ 1.387ð4Þ, and η⊥ ¼ 0.67ð6Þ. Similar analysis on
the staggered model with surface cut-1 gives
yh1 ¼ 0.830ð11Þ, ηk ¼ 1.340ð21Þ, and η⊥ ¼ 0.682ð2Þ.
These critical exponents are listed in Table I. All of them
obey the relations in Eqs. (5) and (6), and are consistent
with the ordinary transition of the 3D O(3) class. This is not
a surprise for the columnar model, where the 3D O(3)
universality class of the bulk QCP has been well established
[11,12]. For the staggered model, this SCB universality
implies that the bulk QCP also belongs to the 3D O(3)
class, which may help to resolve the controversy
[12,15,16].
Special transition.—The surface cut-2 of the columnar

model breaks the strong bonds and leaves dangling bonds
on the surface. In the bulk disordered phase, these dangling
bonds form a spin-1=2 Heisenberg chain with short-range
AF coupling, which is gapless according to the Lieb-
Schultz-Mattis theorem [28]. This is similar to the

emergence of a gapless surface state in the symmetry-
protected topological (SPT) Affleck-Kennedy-Lieb-Tasaki
(AKLT) phase [10,29–31], even though the bulk of the
columnar model is not an AKLT phase. The engineering of
gapless surface states with dangling spins was also studied
in Ref. [32].
The QCP from the AKLT to the Néel ordered phase was

studied in Ref. [10], and the SCB was shown to be in a
distinct universality class from the ordinary transition. This
was attributed to the interaction of the gapless surface state
of the SPT phase and the critical bulk state [10], and was
later interpreted as a gapless SPT state [33,34].
The gapless surface state of the columnar model

with cut-2 results in the same SCB at the QCP as the
AKLT-Néel transition. This is evident from the numerical
results shown in Fig. 4. The critical exponents of the
columnar model with cut-2 from the finite-size scaling
are given by yh1 ¼ 1.7339ð12Þ, ηk ¼ −0.445ð15Þ, and
η⊥ ¼ −0.218ð8Þ, which are consistent with those of the
AKLT-Néel transition. Therefore, this SCB class is a
general consequence of the coexistence of the critical
states both in the bulk and on the surface.
The coexistence of the surface and the bulk critical states

suggests that this SCB universality class is the multicritical
special transition of the 3D O(3) model. In the field
theoretic approach to the SCB of d-dimensional OðnÞ
models, the surface critical exponents of the special

FIG. 3. Physical quantities at the ordinary transitions in surface
cut-1 of the columnar and the staggered models: m2

s1L (left
panel), and CkðL=2Þ and C⊥ðL=2Þ (right panel). The dashed lines
are the finite-size scaling functions.

TABLE I. Surface critical exponents of the dimerized Heisen-
berg models with different surface cut configurations. Results of
the decorated square lattice at the trivial phase-Néel QCP (Jc1)
and the AKLT-Néel QCP (Jc2) [10], the 3D classical Heisenberg
model [7], and the field theoretic results for the ordinary (ord.)
and the special (sp.) transitions from various techniques, includ-
ing ϵ ¼ 4 − d expansion [22,23], ϵ ¼ d − 2 expansion [24],
massive field theory [25,26], and conformal bootstrap [27],
and the anomalous dimensions of transverse (trans.) and longi-
tudinal (long.) correlations from the scaling arguments and the
large-n expansion of OðnÞ models at the extraordinary (ext.)
transition [13,14] are also listed for comparison.

Class Model yh1 ηk η⊥
Ord. Column, cut-1 0.840(17) 1.387(4) 0.67(6)

Stagger, cut-1 0.830(11) 1.340(21) 0.682(2)
Deco.sq., Jc1 0.810(20) 1.327(25) 0.680(8)
3D classical 0.813(2)

ϵ ¼ 4 − d exp. 0.846 1.307 0.664
ϵ ¼ d − 2 exp. 1.39(2)
Massive field 0.831 1.338 0.685
Bootstrap 0.831

Sp. Column, cut-2 1.7339(12) −0.445ð15Þ −0.218ð8Þ
Deco.sq., Jc2 1.7276(14) −0.449ð5Þ −0.2090ð15Þ
ϵ ¼ 4 − d exp. 1.723 −0.445 −0.212

Ext. Stagger, cut-2 1.004(13) −0.5050ð10Þ
Scaling, trans. 3 3=2
Scaling, long. 5 ð5þ ηÞ=2
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transition were calculated with ϵ expansion (ϵ ¼ 4 − d) up
to the ϵ2 order; e.g., ηk is given by [5,23]

ηk ¼ −
nþ 2

nþ 8
ϵþ 5ðnþ 2Þð4 − nÞ

2ðnþ 8Þ2 ϵ2: ð7Þ

Setting ϵ ¼ 1 and n ¼ 3 yields ηk ¼ −0.445, which is
(quite unexpectedly) consistent with our numerical results.
Other surface critical exponents are obtained similarly and
are listed in Table I for comparison.
We remark that the special transition was never antici-

pated in the 3D classical O(3) model [1,5] because the 2D
surface cannot possess either long-range order or power-
law correlation at any finite temperature. The critical
surface states of the columnar model with cut-2 and the
AKLT phase are of pure quantum origin: the topological θ
term in the effective field theory of the spin-1=2 AF
Heisenberg chain suppresses the topological defects and
leads to a critical state at the ground state [35,36]. In
contrast, the proliferation of these defects renders the 2D
surface of the 3D classical O(3) model always short-range
correlated. Moreover, the robustness of the critical surface
states leaves the special transitions in both models less fine-
tuned; i.e., unlike the 3D classical Ising model (Fig. 1), the
special transitions naturally occur at the bulk QCPs without
tuning the surface coupling strength.
Extraordinary transition.—In the staggered model, the

surface cut-2 exposes a surface with two inequivalent
sublattices [Fig. 2(b)]. In the bulk dimerized phase, the
extensive degeneracy of the dangling bonds is lifted by
their effective ferromagnetic (FM) coupling. A long-range
FM order sets in on this sublattice at the ground state.
The AFM coupling to the other sublattice induces a
weaker antiparallel magnetization on the other sublattice.
Therefore, there is a ferrimagnetic (FI) order on the surface
at the ground state.
The squared uniform and staggered magnetizations on

the surface, m2
1 and m2

s1, are shown in Fig. 5(a). All these
surface order parameters extrapolate to nonzero values in
the thermodynamic limit both in the bulk disordered phase
(taking J0 ¼ 4J as an example) and at the QCP. The

preformed surface FI order indicates that the QCP is an
extraordinary transition.
In order to study the extraordinary transition, one must

single out the surface singularities induced by the bulk
QCP. However, this is very difficult for thermodynamic
quantities even in the mean field theory and exactly
solvable models [13,37], because the singularities at the
extraordinary transitions are so weak that they are often
overshadowed by nonsingular contributions. Therefore, we
restrict our attention to the spin correlations CkðL=2Þ and
C⊥ðL=2Þ at the QCP, which are shown in Fig. 5(b).
CkðL=2Þ decreases with a power law and saturates at a
nonzero value as L → ∞ due to the surface FI order, i.e.,
CkðL=2Þ ¼ cþ aL−ð1þηkÞ, and ηk ¼ 1.004ð13Þ. This
behavior is distinct from the FI spin chains, where the
spin correlations drop exponentially [38,39]; hence it is
induced by the bulk critical state, and captures the surface
singularity at the extraordinary transition. On the other
hand, C⊥ðL=2Þ follows a pure power-law decay,
C⊥ðL=2Þ ¼ aL−ð1þη⊥Þ with η⊥ ¼ −0.5050ð10Þ.
These anomalous dimensions are inconsistent with

theoretical predictions for the extraordinary transitions of
d-dimensional OðnÞ models based on scaling arguments
and large-n expansion [13,14] listed in Table I. Moreover,
they apparently violate the relation in Eq. (6). This
remarkable feature suggests that the general understanding
of extraordinary transitions based on scaling theory [13] is
incomplete. First, the surface order may induce a different
length scale besides the bulk correlation length, and thus
invalidate the simple scaling arguments. Second, the
violation of the scaling relation in Eq. (6) may be attributed
to the dichotomy of the transverse and the longitudinal
correlations in the presence of the surface order; i.e., while
CkðrÞ is usually dominated by the transverse correlation,
C⊥ðrÞ may be mainly contributed to by the longitudinal
correlation. These possibilities must be examined by
further calculations.

FIG. 4. Physical quantities at the special transition of the
columnar model with surface cut-2, and the AKLT-Néel QCP
of the decorated square lattice model [10]: m2

s1L (left panel) and
Ck;⊥ðL=2Þ (right panel).

FIG. 5. Surface physical quantities of the staggered model with
cut-2. Left: The staggered and the uniform magnetizations on the
surface, m2

s1 and m2
1, extrapolate to nonzero values as L → ∞

both in the bulk disordered phase (J0 ¼ 4J) and at the QCP,
revealing the FI order on the surface. Right: CkðL=2Þ and
C⊥ðL=2Þ at the QCP.
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Summary.—The surface critical behavior (SCB) of two
dimerized Heisenberg models at their bulk quantum critical
points are studied with different surface cut configurations.
We show that all three types of SCB, i.e., the ordinary,
special, and extraordinary transitions of the 3D O(3) model,
are realized with certain surface configurations. Gapped
surface states in the bulk disordered phase generally lead to
ordinary transitions, and gapless surface states generally
result into multicritical special transitions even if the latter
is precluded in the 3D classical O(3) models. We also find a
ferrimagnetic order on the surface cut-2 of the staggered
model, which leads to an extraordinary transition. The
surface anomalous dimensions ηk and η⊥ at this extraor-
dinary transition not only contradict previous theoretical
predictions based on scaling arguments, but also violate the
scaling relation in Eq. (6). This feature poses a serious
challenge to our current understanding of extraordinary
transitions.
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Note added.—Recently, an independent work [40] was
posted, in which the authors also numerically studied the
generic correspondence between the ordinary and special
classes of surface critical behavior and the different types of
surface states. Their results are fully consistent with
our work.
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