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A thermodynamically consistent free energy model for fluid flows comprised of one gas and two liquid
components is presented and implemented using the entropic lattice Boltzmann scheme. The model allows
a high density ratio, up to the order of Oð103Þ, between the liquid and gas phases, and a broad range of
surface tension ratios, covering partial wetting states where Neumann triangles are formed, and full wetting
states where complete encapsulation of one of the fluid components is observed. We further demonstrate
that we can capture the bouncing, adhesive, and insertive regimes for the binary collisions between
immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications
involving one gas and several liquid components.
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Multiphase flows comprised of one gas and several
liquid components are of considerable scientific interest
due to their broad range of applications. The collision
between oil and water droplets is a key ignition step in
combustion engines, where the collision parameters can be
varied to control the effective burning rate [1]. The presence
of an immiscible crude oil layer on the sea surface alters the
processes occurring during raindrop impact, with conse-
quences for marine aerosol creation and oil spill dispersal
[2]. In advanced oil recovery, considerable gain can be
achieved by alternately displacing the oil by air and water
in the so-called immiscible water-alternating-gas displace-
ment process [3]. Infusing porous materials with lubricants
results in composite surfaces, known as lubricant impreg-
nated surfaces [4–7], with superior nonwetting and drag-
reduction properties.
Despite the wide-ranging applications, suitable quan-

titative models for studying these phenomena are sur-
prisingly still lacking. Most simulations to date have
focussed on either single-component liquid-gas systems
with a high density ratio [8–12] or multicomponent flows
with an equal (or similar) density ratio [13–19]. In
contrast, our aim here is to demonstrate an accurate
and flexible model that can predict complex interfacial
dynamics of ternary systems with a significant ratio

between the liquid and gas densities, up to the order of
Oð103Þ. This enables a new class of multiphase problems
to be simulated, which were not previously possible.
While we focus on one gas and two liquid components,
the model can be extended to include more liquid
components.
Our approach is based on the lattice Boltzmann method

(LBM) [20,21], which has been shown to deliver reliable
results, with quantitative agreement against experiments
and other simulation methods, including on droplet dynam-
ics [22–24], liquid phase separation [25,26], and flow
through porous media [27]. In the LBM, interfacial forces
can be implemented without explicit tracking of the
interfaces, making it an elegant choice for studying meso-
scopic interface dynamics in complex geometries.
Our key contribution over existing LBM models is a

novel free energy functional that combines optimal equa-
tion of state for liquid-gas systems with double-well
potentials to introduce multiple liquid components. The
former, combined with the use of entropic lattice
Boltzmann scheme [8], allows us to introduce significant
density ratios, compared to other ternary free-energy LBM
models [17,18]. The free energy formulation also ensures
our model is thermodynamically consistent, unlike alter-
native approaches [14,28,29].
The capabilities of our new model are demonstrated

using several static and dynamic problems. First, we find
excellent agreement between the numerical and analytical
liquid-gas coexistence curves as a function of temperature,
proving the thermodynamic consistency of the model.
Second, we illustrate how the liquid-liquid and liquid-
gas surface tensions can be flexibly tuned by simulating

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 120, 234501 (2018)

0031-9007=18=120(23)=234501(6) 234501-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.234501&domain=pdf&date_stamp=2018-06-08
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


liquid lenses with varying Neumann angles. Finally, we
simulate binary collisions between two immiscible droplets
and show we capture many relevant features reported in
experiments [30–34].
We introduce a free energy functional that consists of

two parts, the bulk and interfacial contributions:

F ¼
Z

½fB þ fI�dV; ð1Þ

fB ¼ λ1
2
ðΨEOSðρÞ −Ψ0Þþ ð2Þ

λ2
2
C2
l1ð1 − Cl1Þ2 þ

λ3
2
C2
l2ð1 − Cl2Þ2;

fI ¼
κ1
2
ð∇ρÞ2 þ κ2

2
ð∇Cl1Þ2 þ

κ3
2
ð∇Cl2Þ2: ð3Þ

The bulk free energy density fB is designed to allow three
distinct minima, corresponding to one gas and two liquid
components, as illustrated in Fig. 1.ΨEOSðρÞ can be derived
from integrating the liquid-gas equation of state (EOS),
pEOS ¼ ρðdΨEOS=dρÞ −ΨEOS, with coexisting liquid-
gas densities at ρl and ρg. For concreteness, here we use
Carnahan-Starling EOS, but our approach is flexible, and in
the Supplemental Material [35] we describe the implemen-
tation of Peng-Robinson and van der Walls EOS. For
Carnahan-Starling [36]:

ΨEOS ¼ ρ

�
C − aρ −

8RTð−6þ bρÞ
ð−4þ bρÞ2 þ RT logðρÞ

�
: ð4Þ

The constants C and Ψ0 are chosen such that ΨEOSðρgÞ ¼
ΨEOSðρlÞ ¼ Ψ0, ensuring common tangent construction is
met between all coexisting fluid phases. We use a ¼ 0.037,
b ¼ 0.2 and R ¼ 1. The critical temperature is Tc ¼
0.3373ða=bRÞ, and the temperature T governs the
liquid-gas density ratio.
The second and third terms in Eq. (2) have the form

of double well potentials with Cl1 and Cl2 the relative
concentrations of the two liquid components. Established

works on critical phenomena show that such form is
universal to describe the physics of continuous phase
transitions close to the critical point [37], including for
fluid mixtures. Away from the critical point, additional
terms may be needed. However, so long as the details of
the equation of state of the fluid mixtures is not important
for the problem at hand, a large body of work in diffuse
interface models for binary fluids has shown a double well
potential is sufficient to capture interfacial dynamics with
excellent agreement against both theory and experimental
results, such as for droplet dynamics [22,23] and coarsen-
ing in phase separation [25,26]. This is the case for the
examples studied here, and the double well potentials are
therefore chosen as the simplest model possible.
Each double well term has two minima at Cl# ¼ 0

(component absent) and Cl# ¼ 1 (present). We also define
the relative concentration of the gas phase as Cg ¼
ðρ − ρlÞ=ðρg − ρlÞ, which is 0 for ρ ¼ ρl and 1 for
ρ ¼ ρg. Given the constraint Cg þ Cl1 þ Cl2 ¼ 1, there
are two independent order parameters: the density ρ and
the phase field ϕ. The relative concentrations are related to
the density and phase field via Cl1¼ 1

2
½1þϕ=χ−ðρ−ρlÞ=

ðρg−ρlÞ� and Cl2 ¼ 1
2
½1 − ϕ=χ − ðρ − ρlÞ=ðρg − ρlÞ�, with

χ a constant scaling parameter for ϕ. Our free energy
functional has three minima at ðρg; 0Þ, ðρl;þχÞ and
ðρl;−χÞ.
For the interfacial free energy density, fI , all three terms

in Eq. (3) are necessary because there are three independent
surface tensions in ternary systems. Upon expanding Cl# in
terms of ρ and ϕ, we can rewrite fI as

fI ¼
�
κ1
2
þ κ2 þ κ3
8ðρg − ρlÞ2

�
ð∇ρÞ2 þ κ2 þ κ3

8χ2
ð∇ϕÞ2

þ κ3 − κ2
4χðρg − ρlÞ

ð∇ρ · ∇ϕÞ: ð5Þ

We vary the λ parameters in Eq. (2) and κ parameters in
Eq. (3) to tune the surface tensions and interfacial widths
of the three fluid interfaces.
The continuum equations of motion for the fluid are the

continuity, Navier-Stokes, and Cahn-Hilliard equations:

∂tρþ ∇ · ðρvÞ ¼ 0; ð6Þ

∂tðρvÞþ∇ ·ðρv⊗ vÞ¼−∇ ·Pþ∇ · ½ηð∇vþ∇vTÞ�; ð7Þ

∂tϕþ ∇ · ðϕvÞ ¼ M∇2μϕ: ð8Þ

v is the fluid velocity and η is the dynamic viscosity that
depends on the local density and phase field. For simplicity,
we employ constant mobility parameter M, though in
general it can depend on the local density and phase field
[38]. The thermodynamics of ternary fluids, described by
the free energy functional F in Eq. (1), enter the equations

FIG. 1. Contour plot of the bulk free energy density fB as a
function of two order parameters, ρ and ϕ. Three distinct minima
exist, corresponding to a gas component at ðρg; 0Þ, and two liquid
components at ðρl;þχÞ and ðρl;−χÞ.
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of motion through the chemical potentials, μρ ¼ δF=δρjT;ϕ
and μϕ ¼ δF=δϕjT;ρ, and the pressure tensor, ∇ · P ¼
ρ∇μρ þ ϕ∇μϕ. To solve the equations of motion, we
introduce two sets of distribution functions in our LBM
scheme, evolving the density and phase field. For the
former, we employ the entropic lattice Boltzmann method,
augmented with an exact-difference forcing term [8]. For
the latter we use a standard BGK (Bhatnagar-Gross-Krook)
scheme [21]. We provide the details of our LBM imple-
mentation in the Supplemental Material [35], including the
expressions for the chemical potentials and pressure tensor.
To demonstrate the accuracy and broad range of surface

tension ratios allowed in our model, we simulate a liquid
lens, where a droplet of liquid 1 is suspended at the interface
between liquid 2 and the gas phase, as shown in Fig. 2(a).
We show the profiles of the density ρ and phase field ϕ
across the liquid lens configuration in Fig. 2(b). At the
interface between liquids 1 and 2, ρ remains constant at ρl,
while ϕ transforms smoothly between −χ and χ. Both ρ and
ϕ vary at the interface between any of the liquids and the gas.
At equilibrium, force balance between the surface ten-

sions at the three phase contact line leads to a distinct set
of angles known as the Neumann angles. Mathematically,
γ12= sinðθ3Þ ¼ γ2g= sinðθ2Þ ¼ γ1g= sinðθ1Þ. To test this rela-
tion we vary the value of κ3, while keeping λ3 ¼ 3.125 × κ3
and other simulation parameters (see caption of Fig. 2)
constant. For all simulations shown here, we also set the
kinematic viscosity ν ¼ η=ρ ¼ 0.167, and mobility param-
eter M ¼ 0.5. Figure 2(c) shows the Neumann angles
calculated in two different ways. First, we measure the
Neumann angles geometrically (diamond symbol) from our
liquid lens simulations. Second, we use Laplace pressure
tests to independently measure surface tensions for all
permutations of the interfaces (see Supplemental Material
[35]), and subsequently compute the expected Neumann
angles (square symbol). The agreement is excellent, with
typical deviations of < 3°. Similar agreement is observed
upon varying other parameters.
In addition to partial wetting states, where the Neumann

triangle is formed, our model allows simulations of full
wetting states. To demonstrate this, in the Supplemental
Material [35], we present simulation results of two droplets

where γ1g þ γ12 < γ2g. The droplets are initialized such that
they are just touching each other. As dictated by thermo-
dynamics, the simulation shows that the liquid 2 droplet
becomes fully encapsulated by the liquid 1 droplet.
Awide range of density ratios can be simulated by tuning

the temperature T in the equation of state, Eq. (4). Figure 3
shows the coexistence curve for the Carnahan-Starling
EOS. The left (right) branches correspond to the gas
(liquid) densities. Good agreement is obtained between
the analytical solution from Maxwell construction (line)
and the numerical results (dots). The lowest temperature
we can robustly simulate is T ¼ 0.61Tc, corresponding to a
numerical density ratio of Oð103Þ. In the Supplemental
Material [35] we also show that high density ratios can be
achieved with Peng-Robinson and van der Walls EOS.
We now present simulation results of collisions between

two immiscible droplets. In comparison to the more
commonly studied problem of collisions between miscible
droplets of the same materials (e.g., Refs. [8,9]), the
collision outcomes for immiscible droplets are much richer.
Here we show three regimes observed in experiments:
bouncing, adhesive, and insertive collisions, and their
transitions. To our best knowledge, this is the first time
they have been simulated using the LBM. We will focus on
generic features of the drop collisions. Systematic studies,
including parameter matching against experiments, will be
presented elsewhere.

(a) (b) (c)

FIG. 2. (a) Simulation of a liquid 1 droplet suspended at the interface between liquid 2 and the gas phase. The Neumann angles θ1, θ2,
θ3 are a consequence of mechanical equilibrium between the interfacial tensions. (b) The variation of the density ρ and phase field ϕ
across the vertical dashed line shown in (a). (c) Variation of the Neumann angles by varying κ3. We fix λ3 ¼ 3.125 × κ3, λ1 ¼ 0.6,
κ1 ¼ 10−3, κ2 ¼ 1.0, λ2 ¼ 3.125 × κ2, Tr ¼ T=Tc ¼ 0.69 and χ ¼ 5.0.

FIG. 3. The coexistence curve in the numerically stable regime
for Carnahan-Starling EOS as a function of the reduced temper-
ature Tr ¼ T=Tc.
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We first consider bouncing collision. Figure 4(a) shows
an experimental example where the two droplets are water
and diesel oil [31]. As the droplets collide (columns ii and
iii), we observe compression in the drop shapes parallel to
the collision direction and radial expansions perpendicular
to the collision direction. This is followed by retraction in
the radial direction (column iv), and if there is sufficient
kinetic energy, the two droplets bounce off and become
separated (column v). Our simulations show this sequence
is ubiquitous for head-on bouncing collisions. Figure 4(b)
shows one such case at We1 ¼ We2 ¼ 20.8 and Re1 ¼
Re2 ¼ 72.0, where Wei ¼ ρiV2

rDi=γig, Rei ¼ ρiVrDi=ηi,
and Vr is the relative droplet velocity. Here the two droplets
have symmetric properties and we use γ12=γ2g ¼ 1.33. We
set T ¼ 0.65Tc for the rest of the Letter, corresponding to a
density ratio of ρl=ρg ≃ 150. For the cases shown here,
the results do not sensitively depend on the density ratio
beyond ρl=ρg ∼ 100. This is illustrated explicitly in the
Supplemental Material [35] by comparing the results in
Fig. 4 to those obtained using Tr ¼ 0.61 (ρl=ρg ≃ 1000).
By reducing the droplets’ velocities, we observe a

transition from bouncing to adhesive collision, shown in
Fig. 4(c) for We1 ¼ We2 ¼ 5.6 and Re1 ¼ Re2 ¼ 36.0.
Qualitatively the initial collision dynamics is similar
between rows (b) and (c). However, at column (iv) there
is not enough kinetic energy for the droplets to detach.
Subsequently the compound droplet oscillates until it
relaxes to its equilibrium configuration, determined by
the Neumann triangle. Animations of the drop collisions in
Figs. 4(b) and (c) are provided as Supplemental Material
[35]. Adhesive collision between two immiscible droplets
with similar liquid-gas surface tension has been observed
experimentally for diesel and ethanol droplets [32].
A powerful advantage of our model is that it covers

a wide range of surface tension ratios. We can now
consider the asymmetric case where the liquid-gas surface
tension of droplet 2 is considerably larger than that for
droplet 1, yet it does not correspond to the full wetting state.
Figures 5(b)–(e) show the case where γ12=γ2g ¼ 0.54
and γ1g=γ2g ¼ 0.49, with normalized spreading parameter
S ¼ 1 − ðγ1g þ γ12Þ=γ2g ¼ −0.029. In agreement with

experimental observations [30], we observe a transition
between adhesive and insertive collisions by varying the
impact velocities.
An experimental example of insertive collision is

shown in Fig. 5(a) for water and n-hexadecane [30]. For
comparison, Figs. 5(b) and (c) show the typical dynamical
sequence observed in our simulations, with We1 ¼ 16.4,
We2 ¼ 6.1, and Re1 ¼ Re2 ¼ 45.0. Upon collision, the
composite droplet expands radially (column iii), followed
by contraction in the radial direction (column iv) and
elongation in the collision axis (column v). The oscillation
between the prolate and oblate shapes can sustain several
periods (videos in the Supplemental Material [35]), accom-
panied by the propagation of the three-phase contact line
until the high surface tension droplet is fully encapsulated
(column vi).
The transition from insertive to adhesive collision can be

induced by decreasing the droplets’ velocities. In Figs. 5(d)
and (e), we present the case where We1 ¼ 4.4, We2 ¼ 2.2,
and Re1 ¼ Re2 ¼ 27.0. Initially the contact line propagates
to cover the high surface tension droplet as the composite
droplet oscillates between the prolate and oblate shapes
(videos in the Supplemental Material [35]). Since the
kinetic energy is insufficient to drive full encapsulation,
the contact line eventually recedes and the droplet relaxes
to its equilibrium shape (column vi). In the Supplemental
Material [35] we further show the critical velocity for
the transition between insertive and adhesive collisions
increases as the normalized spreading parameter becomes
more negative.
To conclude, we presented a strategy for modeling

ternary multiphase multicomponent flows by combining
a novel free energy formulation and the use of the entropic
LBM scheme. Our approach allows significant density
ratios, up to the order of Oð103Þ, and a broad range of
surface tension ratios, covering both partial and full wetting

(c-i) (c-ii) (c-iii) (c-iv) (c-v)

(b-i) (b-ii) (b-iii) (b-iv) (b-v)

(a-i) (a-ii) (a-iii) (a-iv) (a-v)

FIG. 4. (a) An experimental example of bouncing collision
between two immiscible droplets (water and diesel oil) [31].
(b),(c) Transition from bouncing (b) to adhesive (c) collisions can
be induced by decreasing the droplets’ velocities.

(b-i) (b-ii) (b-v) (b-vi)

(c-i) (c-ii) (c-v) (c-vi)

(a-i) (a-ii) (a-iii) (a-iv) (a-v) (a-vi)

(c-iv)

(e-i) (e-ii) (e-iii) )vi-e( )v-e(

(c-iii)

(e-vi)

(b-iii) (b-iv)

(d-i) (d-ii) (d-iii) )vi-d( )v-d( (d-vi)

FIG. 5. (a) An experimental example of insertive collision
between two immiscible droplets (water and n-hexadecane) [30],
where one droplet is fully encapsulated by the other. Transition
from insertive [(b),(c)] to adhesive [(d),(e)] collisions can be
induced by decreasing the droplets’ velocities. Rows (b) and (d)
are cross sections of the drops in rows (c) and (e).
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states, to be simulated. These flexibilities open up a number
of applications, which were not previously possible. As an
example, we demonstrated the bouncing, adhesive, and
insertive regimes for binary collisions between immiscible
droplets. Our method can meet the gap in systematic
computational work for such collision dynamics, to com-
plement the rich body of existing experimental studies
[30–34]. Other applications are numerous, including drop
impact on immiscible liquid film [2], advanced oil recovery
[3], and liquid impregnated surfaces [4–7].
Here we have assumed the liquids to have the same

density. This is justifiable in most water-oil-gas systems
where the liquid-liquid density ratio is several orders of
magnitude smaller than the liquid-gas density ratio. A
useful future extension is to allow all density ratios to be
varied independently. Our model can also be generalized to
include more liquid components, by introducing additional
double well potential and gradient terms in the bulk and
interfacial free energy densities respectively. Another key
avenue for future work is the interactions between ternary
flows and complex solid surfaces. Our model is compatible
with various approaches to introduce wetting boundary
conditions [45–47].

We acknowledge funding from Procter & Gamble
(H. K.), EPSRC (H. K.; Grant No. EP/P007139/1) and
SNF (I. K.; Grant No. 200021_172640).
The data sets generated and/or analyzed during the

current study are available from H. K. on reasonable
request.

*karlin@lav.mavt.ethz.ch
†halim.kusumaatmaja@durham.ac.uk

[1] C. Wang, C. Lin, W. Hung, W. Huang, and C. Law,
Combust. Sci. Technol. 176, 71 (2004).

[2] D.W. Murphy, C. Li, V. d’Albignac, D. Morra, and J. Katz,
J. Fluid Mech. 780, 536 (2015).

[3] M. H. Holtz et al., in SPE Improved Oil Recovery
Conference, Tulsa, Oklahoma, USA, 2016 (Society of
Petroleum Engineers, Richardson, TX, 2016).

[4] A. Lafuma and D. Quere, Europhys. Lett. 96, 56001 (2011).
[5] J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E.

Cohen, G. H. McKinley, and K. K. Varanasi, Soft Matter 9,
1772 (2013).

[6] T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D.
Hatton, A. Grinthal, and J. Aizenberg, Nature (London) 477,
443 (2011).

[7] C. Semprebon, G. McHale, and H. Kusumaatmaja, Soft
Matter 13, 101 (2017).

[8] A. Mazloomi M, S. S. Chikatamarla, and I. V. Karlin, Phys.
Rev. Lett. 114, 174502 (2015).

[9] D. Lycett-Brown, K. H. Luo, R. Liu, and P. Lv, Phys. Fluids
26, 023303 (2014).

[10] T. Inamuro, S. Tajima, and F. Ogino, Int. J. Heat Mass
Transfer 47, 4649 (2004).

[11] T. Lee and C.-L. Lin, J. Comput. Phys. 206, 16 (2005).

[12] A. Fakhari, D. Bolster, and L.-S. Luo, J. Comput. Phys. 341,
22 (2017).

[13] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G.
Zanetti, Phys. Rev. A 43, 4320 (1991).

[14] X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).
[15] J. Blowey, M. I. M. Copetti, and C. Elliott, IMA J. Numer.

Anal. 16, 111 (1996).
[16] F. Boyer and C. Lapuerta, ESAIM: Math. Model. Num.

Anal. 40, 653 (2006).
[17] C. Semprebon, T. Krüger, and H. Kusumaatmaja, Phys. Rev.

E 93, 033305 (2016).
[18] H. Liang, B. C. Shi, and Z. H. Chai, Phys. Rev. E 93,

013308 (2016).
[19] S. Dong, J. Comput. Phys. 338, 21 (2017).
[20] S. Succi, The Lattice Boltzmann Equation: For fluid

Dynamics and Beyond (OUP, Oxford, 2001).
[21] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt,

G. Silva, and E. M. Viggen, The Lattice Boltzmann
Method: Principles and Practice (Springer, New York,
2016).

[22] Y. Liu, M. Andrew, J. Li, J. M. Yeomans, and Z. Wang,
Nat. Commun. 6, 10034 (2015).

[23] T. Lee and L. Liu, J. Comput. Phys. 229, 8045 (2010).
[24] S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura,

G. Amati, L. Biferale, and M. Sbragaglia, Phys. Rev. Lett.
111, 066101 (2013).

[25] A. J. Wagner and J. M. Yeomans, Phys. Rev. Lett. 80, 1429
(1998).

[26] V. M. Kendon, J.-C. Desplat, P. Bladon, and M. E. Cates,
Phys. Rev. Lett. 83, 576 (1999).

[27] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A.
Narváez, B. D. Jones, J. R. Williams, A. J. Valocchi, and
J. Harting, Comput. Geosci. 20, 777 (2016).

[28] J. Bao and L. Schaefer, Appl. Math. Model. 37, 1860
(2013).

[29] Q. Li and K. H. Luo, Appl. Therm. Eng. 72, 56 (2014).
[30] C. H. Wang, C. Z. Lin, W. G. Hung, W. C. Huang, and C. K.

Law, Combust. Sci. Technol. 176, 71 (2004).
[31] R.-H. Chen and C.-T. Chen, Exp. Fluids 41, 453 (2006).
[32] R.-H. Chen, Appl. Therm. Eng. 27, 604 (2007).
[33] I. V. Roisman, C. Planchette, E. Lorenceau, and G. Brenn,

J. Fluid Mech. 690, 512 (2012).
[34] K.-L. Pan, Y.-H. Tseng, J.-C. Chen, K.-L. Huang, C.-H.

Wang, and M.-C. Lai, J. Fluid Mech. 799, 603 (2016).
[35] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.234501 for addi-
tional discussions on the derivation of the chemical
potentials and pressure tensor, the implementation of the
lattice Boltzmann method, the liquid-gas coexistence
curves for the van der Walls and Peng-Robinson EOS,
the Laplace pressure test, full wetting states for the
Neumann triangle, the transition between insertive and
adhesive collisions, and the comparison between simula-
tion results at two different density ratios. We also provide
videos of the drop collisions in Figs. 4 and 5 as Supple-
mental Material.

[36] P. Yuan and L. Schaefer, Phys. Fluids 18, 042101 (2006).
[37] J. Cardy, Scaling and Renormalization in Statistical

Physics (Cambridge University Press, Cambridge,
England, 1996).

PHYSICAL REVIEW LETTERS 120, 234501 (2018)

234501-5

https://doi.org/10.1080/00102200490255361
https://doi.org/10.1017/jfm.2015.431
https://doi.org/10.1209/0295-5075/96/56001
https://doi.org/10.1039/C2SM27032C
https://doi.org/10.1039/C2SM27032C
https://doi.org/10.1038/nature10447
https://doi.org/10.1038/nature10447
https://doi.org/10.1039/C6SM00920D
https://doi.org/10.1039/C6SM00920D
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1063/1.4866146
https://doi.org/10.1063/1.4866146
https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.030
https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.030
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1016/j.jcp.2017.03.062
https://doi.org/10.1016/j.jcp.2017.03.062
https://doi.org/10.1103/PhysRevA.43.4320
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1093/imanum/16.1.111
https://doi.org/10.1093/imanum/16.1.111
https://doi.org/10.1051/m2an:2006028
https://doi.org/10.1051/m2an:2006028
https://doi.org/10.1103/PhysRevE.93.033305
https://doi.org/10.1103/PhysRevE.93.033305
https://doi.org/10.1103/PhysRevE.93.013308
https://doi.org/10.1103/PhysRevE.93.013308
https://doi.org/10.1016/j.jcp.2017.02.048
https://doi.org/10.1038/ncomms10034
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1103/PhysRevLett.111.066101
https://doi.org/10.1103/PhysRevLett.111.066101
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.83.576
https://doi.org/10.1007/s10596-015-9542-3
https://doi.org/10.1016/j.apm.2012.04.048
https://doi.org/10.1016/j.apm.2012.04.048
https://doi.org/10.1016/j.applthermaleng.2014.03.030
https://doi.org/10.1080/00102200490255361
https://doi.org/10.1007/s00348-006-0173-2
https://doi.org/10.1016/j.applthermaleng.2006.05.025
https://doi.org/10.1017/jfm.2011.459
https://doi.org/10.1017/jfm.2016.381
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.234501
https://doi.org/10.1063/1.2187070


[38] There have been several works dedicated to understanding
the choice of the mobility parameter M, including on
coarsening dynamics during phase separation [39,40],
droplet coalescence and breakup [41,42], and contact line
motion of a fluid interface at a solid boundary [43,44].

[39] S. Dai and Q. Du, J. Comput. Phys. 310, 85 (2016).
[40] J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E 60,

3564 (1999).
[41] D. Jacqmin, J. Comput. Phys. 155, 96 (1999).
[42] P. M. Dupuy, M. Fernandino, H. A. Jakobsen, and H. F.

Svendsen, Comput. Math. Appl. 59, 2246 (2010).

[43] H. Kusumaatmaja, E. J. Hemingway, and S. M. Fielding, J.
Fluid Mech. 788, 209 (2016).

[44] P. Yue, C. Zhou, and J. J. Feng, J. Fluid Mech. 645, 279
(2010).

[45] H. Ding and P. D. M. Spelt, Phys. Rev. E 75, 046708
(2007).

[46] H. Huang, D. T. Thorne Jr., M. G. Schaap, and M. C. Sukop,
Phys. Rev. E 76, 066701 (2007).

[47] J.-J. Huang, H. Huang, and X. Wang, Int. J. Numer.
Methods Fluids 77, 123 (2015).

PHYSICAL REVIEW LETTERS 120, 234501 (2018)

234501-6

https://doi.org/10.1016/j.jcp.2016.01.018
https://doi.org/10.1103/PhysRevE.60.3564
https://doi.org/10.1103/PhysRevE.60.3564
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1016/j.camwa.2009.08.050
https://doi.org/10.1017/jfm.2015.697
https://doi.org/10.1017/jfm.2015.697
https://doi.org/10.1017/S0022112009992679
https://doi.org/10.1017/S0022112009992679
https://doi.org/10.1103/PhysRevE.75.046708
https://doi.org/10.1103/PhysRevE.75.046708
https://doi.org/10.1103/PhysRevE.76.066701
https://doi.org/10.1002/fld.3975
https://doi.org/10.1002/fld.3975

