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We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-
based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate
depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the
region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or
inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor
delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
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The ability to engineer and control quantum many-body
systems has led to a surge in important advances [1]
ranging from quantum computation to the observation of
emergent phenomena and far-from-equilibrium dynamics
[2,3]. Specifically, lattice-based Bose-Einstein condensates
(BECs) [4] and spin systems [5] allow for a deeper grasp of
the role interactions and correlations [6] play in both static
and dynamic phenomena. In the far-from-equilibrium case,
these platforms allow exploration of regimes where corre-
lations and fluctuations may be dominant. Moreover, they
yield signatures of quantum chaos, which provides insight
into the transition from integrable to nonintegrable dynam-
ics as well as the quantum-classical correspondence for
such dynamics [7]. Such a transition to chaos is often
associated with quantum chaotic level statistics, e.g., the
kicked rotor. In the many-body case, a link between
quantum chaos and high entanglement has been proposed
previously [8], yet the many-body perspective has not been
completely investigated. In this Letter, we present dynami-
cal quantum many-body measures including depletion,
basis occupation, and entanglement that correlate with
quantum chaotic level statistics and provide a general
method to identify and quantify quantum many-body chaos
in systems where randommatrix theory (RMT) is of limited
use or inaccessible. We also find that quantum many-body
chaos does not require or produce high entanglement,
contrary to conventional thinking.
As a case study in the properties of quantum many-body

chaos, we explore the statics and dynamics of quantum
ratchet. This ratchet can be realized as a BEC in a toroidal
trap driven by a potential that breaks generalized parity and
time-reversal symmetries (Fig. 1). The violation of these
symmetries are well known to produce ratchet effects in the
semiclassical limit, i.e., directional motion in the presence
of zero time average force, which can be regular or chaotic
[9–11]. In our system, these regimes are tuned by inter-
action strength [12]. We perform a comprehensive study of

the quantum many-body measures of this system in three
representations: position, momentum, and a truncated
Floquet picture. In this analysis, we use entanglement,
condensate depletion, and the spreading over a fixed basis
in the many-body Hilbert space to quantitatively identify
the interaction regime over which quantum chaos begins,
ends, and is maximal. Moreover, we show that the RMT
level statistics confirm this classification of chaos, although
the results rapidly become misleading as more single
particle modes are included.
Systems ranging from BECs [14] to confined electrons

in semiconductors [15] and driven graphene [16] can
possess nonequilibrium transport properties and have
shaped the understanding of the classical and quantum
effects leading to such phenomena. Displaying both regular
and chaotic dynamics, as well as collective properties
[10,17], many-body quantum ratchets provide insight into
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FIG. 1. Quantum ratchet in a ring trap. (a) BEC (blue torus)
trapped in a ring geometry (yellow), being rotated off center
(black arrow). The driving breaks generalized P and T sym-
metries, giving rise to the ratchet effect. (b) The system can be
treated as a one-dimensional condensate, driven by the symmetry
breaking potential VðtÞ, generated by the rotation of the trap.
(c) The effective three-level system, derived from the Floquet-
inspired ðt; t0Þ formalism [13], provides a simplified treatment of
the quantum ratchet. The system exhibits three dynamical
regimes in particle current, Rabi oscillations, chaos, and self-
trapping, for increasing particle interactions.
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the role of quantum many-body effects in the transition
between regular and chaotic dynamics. Probes into quan-
tum chaos often focus on RMT [18–20], whether in few
particle systems [21,22] or the many-body case [23–25].
However, reaching the statistics necessary to classify
quantum chaos in such a way frequently becomes intrac-
table due to large amounts of degeneracy or too many
dynamically irrelevant single particle modes. Here we
provide an in-depth view on the interplay between quantum
chaos defined by RMT and entanglement and other
measures that are more relevant to interacting many-body
systems. Under time evolution, these measures provide new
methods for which quantum chaos may be identified when
RMT analysis becomes out of reach.
We consider a BEC in an optical ring trap that is rotated

off center, closely following the experimental setups for
generating toroidal BECs [26–29]. The rotation of the BEC
generates, via inertial effects, a space- and time-dependent
potential that breaks the generalized parity and time-
reversal symmetries (Fig. 1) [12], generating a ratchet
current [9,10]. In the semiclassical limit, it exhibits a
continuous transition from Rabi oscillations, to chaos, into
self-trapping with the increase of the particle coupling [12].
As a tractable quantum many-body generalization of this
effectively one-dimensional system, we use a periodic
Bose-Hubbard model with fixed particle number. Here
the model can be regarded as a discretization of the ring
geometry or a ring lattice formed by a toroidal trap in
superposition with radial barriers [30]. Given in hopping
units, where the time scale becomes the hopping time ℏ=J
and energies are scaled by J, we have

ĤPos
B ¼ −

XL

i¼1

ðb̂†i b̂iþ1 þ H:c:Þ þU
2

XL

i¼1

n̂iðn̂i − 1̂Þ

þ
XL

i¼1

Vin̂i; ð1Þ

with the driving potential

Vi¼ViðtÞ¼Eþcosðκrθi−ωtÞþE−cosð−κrθi−ωtÞ: ð2Þ
Here b̂i, b̂

†
i , and n̂i are the bosonic annihilation, creation, and

number operators, respectively, with periodic boundary
conditions b̂Lþi ¼ b̂i. κ is the wave number of the driving
field, ω is the driving frequency, r is the radius of the
condensate, E� are the field amplitudes, and θi ∈ ½0; 2πÞ is
the angle of the ith site in an L-site discretization. We study
resonant driving, κ ¼ 1=r, ω ¼ 2½1 − cosð2π=LÞ�. In terms
of the mean-field interaction strength, the transition into
self trapping is given by ŨST ¼ 2maxðEþ; E−Þ, where Ũ≡
ðN − 1ÞU=L [12]. Semiclassically, positive Lyapunov
exponents arise in distinct regions on the interval
0.013 ≤ Ũ ≤ ŨST, similar to the logisticmap having regions
of chaos and stability. The time scales for system dynamics
are the drive periodT ¼ 2π=ω, and theRabi periodwith zero
interactions TR ¼ 2π=ðE2þ þ E2

−Þ1=2.

Without loss of generality, we can choose Eþ ¼ 9=400
and E− ¼ 3=400, and, unless otherwise specified, L ¼ 10
with the number of particles N ¼ 5. When considering
dynamics, time evolution calculations are performed using
exact diagonalization, with a time step of 0.1T, and time
evolving block decimation (TEBD) [31–35] with a time
step of 0.1ℏ=J. The time steps were selected with the
convergence of each respective method as the determining
factor.
Since the semiclassical counterpart of our system is

chaotic for particular interaction strengths and time periodic,
we expect to resolve quantum chaotic level statistics of the
Floquet operator F̂¼ ÛðTþ t0ÞÛðTþ t0−δtÞ���Ûðt0þδtÞ,
with ÛðtiÞ ¼ exp½ð−i=ℏÞĤðtiÞδt� [7]. RMTpredicts that the
quasienergy level spacings sε, normalized by the mean
spacing, should exhibit level repulsion leading to a prob-
ability distribution PðsεÞ, which approach zero polyno-
mially for s → 0. As can be seen in Fig. 2(a), where we have
set δt ¼ 0.1T, which well captures F̂, the level statistics
follow a Poisson distribution that is indicative of regular

(a) (b)

(c) (d)

FIG. 2. Random Matrix Theory Analysis. (a) The quasienergy
level statistics of the driven Bose-Hubbard model obtained from
the Floquet operator. The dynamical regimes are Rabi oscillations,
chaos, and self-trapping for interaction strengths of Ũ ¼ 0.011,
0.021, and 0.034, respectively, and the black line indicates Poisson
statistics. The quasienergy level spacings have increasing prob-
ability as the spacing tends to zero for both the regular and chaotic
regimes, contrary to the prediction of Random Matrix Theory.
(b) Level repulsion is recovered in the truncated three-level
system, shown for particle number N ¼ 50. (c) The Brody
distribution (solid curves in (b)), which interpolates between
Poisson statistics (η ¼ 0) and Wigner-Dyson statistics (η ¼ 1,
black curve), has turning points which identify the chaotic regime.
The fits ignore the initial fluctuations for Ũ < 0.008, since they
correspond to Rabi dynamics. (d) Critical Ũ as a function of N,
which asymptotically define the chaotic regime [gray shading
in (c)], where the colored regions give the error in g.
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dynamics. The argument that the near degeneracies in the
quasienergies wash out the polynomial decrease to zero can
be made, yet analysis accounting for near degeneracies by
truncating the lowest level spacings from the calculation
revealed no level repulsion.
Instead of considering the time-dependent Bose-

Hubbard model, we apply the ðt; t0Þ formalism [36] to
the equation of motion for the field operator ψ̂ðx; tÞ and
expand it in the nonlinear Floquet states. Thus, we arrive at
a time-independent description of the quantum ratchet [13].
Furthermore, previous studies show that three Floquet
modes with k ∈ f0;�1g capture the dynamics of our
quantum ratchet in an effective three-level system (3LS)
[12,37]. This Hamiltonian is then given as

Ĥ3LS ¼
1

2
Eþðâ†þâ0 þ H:c:Þ þ 1

2
E−ðâ†−â0 þ H:c:Þ

−
U
2L

X

ν

n̂νðn̂ν − 1̂Þ: ð3Þ

Here âν, â
†
ν, and n̂ν are bosonic annihilation, creation, and

number operators, respectively, for ν ¼ f0;þ;−g, which
represent the 0 and �1 momentum modes. E�, from the
driving potential in ĤPos

B , couples the 0 and � modes. Note
that repulsive interactions in the Bose-Hubbard model
translate into attractive interactions in the 3LS due to the
angular momentum representation [13].
We can now test the eigenvalue statistics of Ĥ3LS, which

are the quasienergies of the system. In contrast to the
statistics of ĤPos

B , level repulsion becomes manifest in this
truncated description with varying amounts, depending on
the particle interaction strength (Fig. 2). In order to
characterize the quantum chaotic nature of the level
statistics, we fit the eigenvalue spacings of Ĥ3LS for N
from 10 to 120 with the Brody distribution, PðsÞ ¼ bðηþ
1Þsη expð−bsηþ1Þ where b≡ Γ½ðηþ 2Þ=ðηþ 1Þ�ηþ1 [38].
Here we fit the control parameter η, which interpolates
between regular and quantum chaotic level statistics, that is,
η ¼ 0 indicates Poisson statistics and η ¼ 1 is Wigner-
Dyson, or quantum chaotic statistics in RMT [39].
Figure 2(c) shows the Brody parameter η as a function of

interaction for particle numbers N ¼ 20, 50, and 100. Only
one dominant trend is observed in the level statistics, even
though there are, in the semiclassical limit, distinct pockets
of chaos on the interval of interaction strengths considered.
From this trend, we extract the first turning point Ũs,
maximum Ũm, and second turning point Ũe, in order to
quantitatively characterize the chaotic regime of the system.
For this analysis, we use a phenomenological modified
Lorentzian fit of the form ηðŨÞ ¼ A expð−bgÞ=½1þ cðŨ þ
dÞ4� and ignore the first 15η values since they show
fluctuations while being Rabi dynamics. In analogy with
the analysis of critical exponents in quantum phase
transitions, we also perform a fit of the scaling of
these interaction strengths as a function of N,

Ũfs;m;eg ¼ ANB þ C, and extract their asymptotic values
given by the fit parameter C. This yields the asymptotic
values of Ũs ¼ 0.011� 0.001, Ũm ¼ 0.021� 0.001, and
Ũe ¼ 0.034� 0.002, thereby clearly delineating the cha-
otic regime as shown in Fig. 2(d).
From the two cases presented in Fig. 2, it is clear that the

application of RMT as an identifier of quantum chaos has
certain limitations. This manifests in our quantum ratchet
due to the inclusion of too many nonrelevant single particle
momentum modes in ĤPos

B [Eq. (1)]. It is then clear that, for
systems in which there is no a priori method to anticipate
which single particle modes can be truncated, RMT is
highly limited. Figure 2(a) explicitly shows failure of RMT
for the untruncated Bose-Hubbard model of our quantum
ratchet, while its validity is recovered in the truncated 3LS
model, shown in Fig. 2(b).
In contrast, the proposed dynamical many-body mea-

sures of entanglement, condensate depletion, and basis
occupation are independent of truncation. However, since
the 3LS only includes three momentum modes and has a
reduced dimension D3LS ¼ ðN þ 1ÞðN þ 2Þ=2 compared
to the Bose-Hubbard case DBH ¼ ðNþL−1

L−1 Þ, we introduce
the momentum space Bose-Hubbard model. Considering
the momentum space Bose-Hubbard model acquired
by the standard discrete Fourier transformation b̂i ¼
L−1=2PbL=2c−1

k¼−bL=2c âk exp½ikθi�, where b·c is the floor func-
tion, allows us to directly compare the many-body mea-
sures regardless of truncation. The new Hamiltonian is then

ĤMom
B ¼ −2

XbL=2c−1

k¼−bL=2c
â†kâk cosð2πk=LÞ

þ U
2L

XbL=2c−1

kj¼−bL=2c
â†k1 â

†
k2
âk3 âk4δk1þk2;k3þk4

þ 1

2

XbL=2c−1

k¼−bL=2c
½ðEþeiωt þ E−e−iωtÞâ†kâkþκ

þ ðEþe−iωt þ E−eiωtÞâ†kþκâk�; ð4Þ

where âk and â†k are bosonic annihilation and creation
operators in the state with wave number 2πk=L, respec-
tively. Here we note that the k ¼ 0 and�1 states are similar
to those from the 3LS model, but the time dependence
remains in the Hamiltonian and is not absorbed into the
nonlinear Floquet states as it was in Eq. (4).
The dynamics for the remainder of this study were

computed using exact diagonalization for every represen-
tation (truncation) of the quantum ratchet for a lattice length
of L ¼ 10 and number of particles N ¼ 5, with the initial
state being the ground state of the undriven Bose-Hubbard
model. We also perform scaling in the position Bose-
Hubbard model [Eq. (1)] using TEBD.
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We apply well established many-body measures: the von
Neumann entropy of entanglement S, the condensate
depletion D, and the inverse participation ratio P−1. The
quantum entropy S≡ −TrðρA log ρAÞ measures correla-
tions between a subsystem A and the remainder of the
system, where ρA is the reduced density matrix of a
subsystem A. For ĤPos

B , there is no symmetry pointing to
a particular cut of the system, thus we take A to be half of
the ring. Since current reversals are one of the main features
of quantum ratchet in its chaotic regime, we take A as the
modes with k ≥ 0 for ĤMom

B and Ĥ3LS. The depletion, D≡
1 − λ1=N with λ1 the first eigenvalue of the single particle
density matrix hâ†i âji, measures the amount of the original
condensate still remaining in one single particle mode.
Finally, P−1 ≡ ðPip

2
i Þ−1, where pi is the probability of

being in the ith basis state and measures the spreading of
the state over the many-body Hilbert space.
For each of the above measures, we take the time average

over 10TR for 15 values of the interaction strength spanning
all three dynamical regimes. We then apply fitting functions
to each measure and extract Ũs, Ũm, and Ũe. For the von
Neumann entropy, we use the fitting functions S̄ðŨÞ ¼
ðtanhðAŨÞ þ BÞC=½1þDðŨ þ EÞ4� þ F for ĤPos

B and
S̄ðŨÞ ¼ A=½1þ BðŨ þ CÞ2� þD for ĤMom

B and Ĥ3LS [see
Fig. 3(a)]. For the depletion, we use a fitting
function D̄ðŨÞ¼ tanh½AðŨÞ�fB=½1þCðŨþDÞ4�þEg for
each model [see Fig. 3(b)]. For the inverse participation
ratio, only ĤMom

B and Ĥ3LS showed trending with the
dynamical regimes; thus, these were fit with the function

P−1ðŨÞ¼A=½1þBðŨþCÞ2�þD. The values of the critical
interaction strengths Ũs, Ũm, and Ũe from eachmeasure can
be seen in Table I.
Here we perform a scaling study of the von Neumann

entropy and depletion in TEBD for L ¼ 6–14. Figure 3(d)
shows density plots of the mean entropy (top) and depletion
(bottom). The trends are generally the same and can
also be fit for the interactions strengths Ũs, Ũm, and Ũe
shown in Fig. 2(d). Figure 3(d) clearly shows that the
system can be taken to longer lattices without growth in
entanglement. This implies that the system can be effec-
tively simulated with matrix product state methods, though
full local dimension is required for convergence and is
likely to be an issue for other driven and/or highly
oscillatory dynamics [40].
Table I summarizes the critical interaction strengths that

can be extracted by fitting the many-body measures from
exact diagonalization in Figs. 3(a)–3(c). It is important to
note that, even though the level statistics of Ĥ3LS predict
quantum chaos, the case of N ¼ 5 for the dynamical
measures would be far too small in the 3LS to give any
statistical measure of chaos.
In conclusion, we have identified measures that

reliably quantify quantummany-body chaos: entanglement,
condensate depletion, and inverse participation ratio.

(a) (b)

(c) (d)

FIG. 3. Quantum many-body measures. (a)–(c) The chaotic
regime is indicated by vertical shading spanning from Ũs to Ũe,
with the solid black line giving the maximally chaotic point Ũm,
according to the level statistics in the large N limit. (a) Entropy
and (b) depletion show characteristic increases in the chaotic
regime in x space, k space, and the truncated Floquet space
representations of the ratchet [shared key in (a)]. (c) Inverse
participation ratio shows a characteristic increase in the chaotic
regime only in k space and the truncated Floquet space [shared
key in (a)]. Each measure allows a fit (solid lines), which can be
used to extract the onset of chaos, maximal chaos, and end point
of chaos. (d) Entropy and depletion exhibit similar trends
regardless of lattice length in x space. The lack of increasing
entropy indicates the system can be simulated using matrix
product states methods.

TABLE I. Tools for quantum chaos identification. Each mea-
sure clearly identifies the maximally quantum chaotic interaction
strength Ũm and the end of the chaotic regime Ũe. Only in
momentum and Floquet spaces is the onset of the chaotic regime
Ũs obtained via entropy and inverse participation ratio (IPR).
Cells with center dots indicate a measure fails to predict its
corresponding interaction parameter.

Measure Ũs Ũm Ũe

Level statistics
N → ∞

0.011�0.001 0.021�0.001 0.034�0.002

Entropy position � � � 0.016þ0.004
−0.003 0.29þ008

−0.005
Entropy momentum 0.011þ001

−008 0.019þ0.001
−0.001 0.026þ0.001

−0.001
Entropy Floquet 0.011þ0.001

−0.001 0.019þ0.001
−0.001 0.028þ0.001

−0.001
Depletion position � � � 0.016þ0.008

−0.003 0.027þ0.002
−0.002

Depletion momentum � � � 0.016þ0.003
−0.002 0.026þ0.003

−0.002
Depletion Floquet � � � 0.016þ0.008

−0.003 0.027þ0.010
−0.005

IPR position � � � � � � � � �
IPR momentum 0.011þ0.001

−0.001 0.018þ0.001
−0.001 0.026þ0.001

−0.001
IPR Floquet 0.011þ0.001

−0.001 0.019þ0.001
−0.001 0.027þ0.001

−0.001
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Entanglement and inverse participation ratio capture the
onset, maximum, and end of chaos in both momentum and
the truncated Floquet pictures, while depletion is a universal
measure of quantum chaos in all three representations of the
quantum ratchet. These measures are especially important
for very large systems where obtaining the full spectrum
required for random matrix theory is computationally
inaccessible. Thus, they show potential for identifying
quantum chaotic dynamics more generally, whereas RMT
is limited in small and large systems or rapidly becomes
misleading due to the inclusion of nonrelevant single particle
modes. Contrary to the conventional association of quantum
chaos with high entanglement and lack of localization in
Hilbert space, we have shown for the quantum ratchet that
quantum many-body chaos is neither highly entangled nor
does it require many elements of the many-body basis.
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