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We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be
derived from gauge invariance together with mild assumptions on their singularity structure. Assuming
locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance
in just n − 1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the
form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger
conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on
shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure
for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar
statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by
replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.
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Gauge redundancy.—The importance of gauge invari-
ance in our description of physics can hardly be overstated,
but the fundamental status of “gauge symmetry” has
evolved considerably over the decades. While many older
textbooks rhapsodize about the beauty of gauge symmetry
and wax eloquent on how “it fully determines interactions
from symmetry principles”, from a modern point of view
gauge invariance can also be thought of as by itself an
empty statement. Indeed any theory can be made gauge
invariant by the “Stuckelberg trick”—elevating gauge-
transformation parameters to fields—with the “special”
gauge invariant theories distinguished only by realizing the
gauge symmetry with the fewest number of degrees of
freedom.
Instead of gauge symmetry, we speak of gauge “redun-

dancy” as a convenient but not necessarily fundamental
way of describing the local physics of Yang-Mills and
gravity theories. From the modern point of view, gauge
symmetry is merely useful for making locality and unitarity
manifest when describing the physics of an interacting
massless particle of spin one or two.
Over the past few decades, we have seen entirely

different formalisms for computing scattering amplitudes
not tied to this formalism, and here, gauge redundancy

makes no appearance whatsoever. Instead of polarization
vectors that only redundantly describe massless particle
states, we can use spinor-helicity variables, which trivially
incorporate gauge invariance.
With this description of amplitudes at hand, it becomes

possible to pursue entirely new strategies for determining
the amplitudes. In a first stage, one can speak of a modern
incarnation of the S-matrix program, where the fundamen-
tal physics of locality and unitarity are imposed to
determine the amplitudes from first principles. This has
allowed the computation of amplitudes in an enormous
range of theories, from Yang-Mills and gravity to
Goldstone bosons, revealing stunning simplicity and deep
new mathematical structures that are completely hidden in
the usual, gauge-redundant Feynman diagram formalism.
Conversely and more ambitiously, these developments
suggest that what we think of as “scattering amplitudes
from local evolution in spacetime” might fundamentally be
something entirely different: instead of merely exploiting
locality and unitarity to determine the amplitudes, we seek
“scattering amplitudes” as the answer to very different
natural mathematical questions, and only later discover that
the results are local and unitary. Carrying this program out
in full generality for all interesting theories would likely
shed powerful new light on a deeper origin for both
spacetime and quantum mechanics itself.
A step in this direction has been taken with the discovery

of the “amplituhedron” [1], a geometric object generalizing
plane polygons to higher-dimensional spaces, whose
“volume” computes scattering amplitudes for maximally
supersymmetric four-dimensional theories in the planar
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limit (in particular, giving tree-level gluon scattering ampli-
tudes for the real theory of strong interactions relevant for
particle collisions at the LHC). In this example, we can see
concretely how the usual rules of spacetime and quantum
mechanics emerge from more primitive principles.
Role reversal.—In this Letter, we explore aspects of

locality and unitarity from a point of view entirely orthogo-
nal to these recent developments. As emphasized above,
much of the explosion of progress in understanding scatter-
ing amplitudes has taken place precisely by eschewing any
reference to gauge redundancy and working directly with the
physical on-shell amplitudes. Here, we instead return to the
requirement of on-shell gauge invariance as primary and
consider rational functions built out of polarization vectors
and momenta, without making any reference to underlying
Lagrangian or Feynman rules. Surprisingly, we find that with
mild restrictions on the form of functions we consider the
requirement of on-shell gauge invariance uniquely fixes the
functions to match the tree amplitudes of Yang-Mills theory
for spin one and gravity for spin two. There is a similar story
determining the amplitudes for Goldstone bosons of the
nonlinear sigma model and the Dirac-Born-Infeld action,
where the requirement of on-shell gauge invariance is
replaced by an appropriate vanishing of amplitudes in soft
limits.
Suppose that we are handed a rational function of

momenta and polarization vectors. What constraints deter-
mine this function to correspond to “scattering amplitudes”?
One might imagine that both locality and unitarity are
crucially needed for this purpose. In other words, we have
to assume that this function has only simple poles when the
sum of a subset S of the momenta Pμ

S ¼ P
i⊂Sp

μ
i goes on

shell; i.e., the only singularities present look like ∼1=P2
S,

and the function factorizes on the poles into the product of
lower-point objects, with an extra intermediate line.
Our central claim is that while locality and unitarity must

be imposed to determine amplitudes for garden-variety
scalar theories like ϕ3, much less is needed to uniquely fix
the function to be “the amplitude” for gauge theories and
gravity. In fact, we conjecture that simply specifying that
singularities only occur when the sum of a subset of
momenta goes on shell P2 → 0, together with the usual
mass dimension power counting (which also enforces
nontrivial gauge invariance) uniquely fixes the function.
We sketch the essential ideas in this Letter; a more detailed
exposition of our proof and other related results appear in
[2]. Other observations about the surprisingly restrictive
power of on-shell gauge invariance have recently been
made in [3].
To begin, we can enforce only locality and look at

functions whose singularities are propagator poles appear-
ing in cubic graphs. But we do not demand unitarity: we do
not demand that the function factorizes on the poles.
We find that the leading nontrivial gauge invariants with
the singularities of cubic graphs are unique and give us

amplitudes. The necessity of factorization—and thus
unitarity—follows from locality and gauge invariance.
We sketch a straightforward proof of this fact, which
begins by showing that given the poles of cubic graphs
gauge invariance alone (with no assumption about factori-
zation) fixes the structure of the soft limit of any expres-
sions to reproduce the usual Weinberg soft theorems [4].
But we also make a stronger conjecture that even the

structure of singularities associated with cubic graphs need
not be enforced: we need only assume that the singularities
occur when P2

S → 0. We consider functions that have at
most degree β singularities of this form, and that is our most
general ansatz is

X
fS1;…;Sβg

NiðpαÞ
P2
S1
� � �P2

Sβ

: ð1Þ

Here, NiðpαÞ is a polynomial in the momenta (and linear in
all the polarization vectors), with a total of α momenta.
We now only ask for this expression to be on-shell gauge

invariant. The answer is unique, if we limit to the lowest
possible value for α, which turns out to be α ¼ n − 2.
Similarly, the lowest number of singularities needed to find
a solution is β ¼ n − 3.
This unique object picks out the singularities from cubic

graphs and factorizes on poles; locality and unitarity arise
from singularities and gauge invariance.
All of these statements are made in generalD spacetime

dimensions: we are working with Lorentz invariants of
the form ðϵi · ϵjÞ, ðϵi · pjÞ, and ðpi · pjÞ, satisfying the
relations p2

i ¼ 0, ϵi · pi ¼ 0, and momentum conservationP
ip

μ
i ¼ 0.

Locality, unitarity, and gauge invariance.—Let us begin
by focusing on the tree-level scattering amplitudes in
Yang-Mills theory; we later summarize the precisely
analogous statements for gravity. The group structure of
gluon amplitudes can be stripped off in trace factors
An ¼

P
σ=ZTrðTσ1Tσ2…TσnÞAnð123…nÞ, where An is an

ordered amplitude which is a gauge invariant cyclic
object. All poles in An are local cyclic factors, P2

ij ¼
ðpi þ piþ1 þ � � �pjÞ2. On these poles, An factorizes as a
product of two ordered amplitudes,

lim
P2→0

An ¼
X
h

AðhLÞ
L

1

P2
AðhRÞ
R ; ð2Þ

where we sum over all internal degrees of freedom h.
The cyclic amplitude An can be calculated using color-

ordered Feynman rules. For each cubic graph Γ, we get

DðΓÞ
n ¼ NðΓÞ

n ðϵi; pjÞ
P2
σ1P

2
σ2…P2

σn−3

; ð3Þ

where all the factors P2
σa in the denominator come from

Feynman propagators of cubic diagrams. The numerator is
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a polynomial in all polarization vectors ϵi and n − 2
momenta pj. For the diagrams with four point vertices,
we get fewer than n − 3 propagators, but they can be also
put (nonuniquely) in the form by multiplying both numer-
ator and denominator by some P2.
Feynman diagrams are designed to make locality and

unitarity manifest, but gauge invariance is not manifest
diagram-by-diagram: we have to sum over all Feynman
diagrams to get a gauge invariant expression. The tension
between locality, unitarity, and gauge invariance is
vividly seen in the four-particle amplitude. The color
ordered amplitude A4 is a sum of three Feynman diagrams,
schematically written as (ignoring all indices)

A4 ∼
ðϵ · pÞðϵ · ϵÞ

s
þ ðϵ · pÞðϵ · ϵÞ

t
þ ðϵ · ϵÞðϵ · ϵÞ: ð4Þ

Only the sum of all three terms is gauge invariant which can
be made manifest once we write A4 as

A4 ∼
F4

st
; ð5Þ

where the numerator is just a (color-ordered) local ampli-
tude. This expression is trivially gauge invariant, but we do
not have manifest locality and unitarity.
Unitarity from locality and gauge invariance.—First, we

would like to build an ansatz compatible with locality.
Consider the set of all cubic graphs with cyclic ordering
of external legs and for each of them write an expression

D̃ðΓÞ
n of the form (3) where the poles in the denominator are

dictated by the internal lines of the given graph. Unlike in
Feynman diagrams, we do not demand the numerator
comes from Feynman rules, and therefore, we are not
imposing unitarity or factorization. Instead, we take

NðΓÞ
n ðpn−2Þ to be an arbitrary polynomial of degree n − 2

in momenta pj and n polarization vectors ϵi.
Now, we now consider a sum of all expressions

associated with graphs Γ,

Ãnðpn−2Þ ¼
X
Γ
D̃ðΓÞ

n ðpn−2Þ; ð6Þ

and impose gauge invariance in just n − 1 legs. We claim
that this specifies a unique expression which is an n point
tree-level amplitude Ãn ¼ An.
The proof goes as follows: we assume inductively that

Ãn ¼ An is unique for the n particle case and that there is no
local tensor Bμ1…μm

n ðpkÞ gauge invariant in kþ 1 particles
for k ≤ n − 2. Now, we take the expansion (6) for nþ 1
particles and go to the soft limit pnþ1 ≡ q → 0. It is easy to
show that gauge invariance requires the leading divergent
term to be a Weinberg soft factor,

Ãnþ1 ¼
�
ϵ · p1

q · p1

−
ϵ · pn

q · pn

�
Bnðpn−2Þ þOð1Þ; ð7Þ

where Bn is the gauge invariant function in n − 1 legs
with n − 2 powers of momenta, so it must be equal to An
by induction. Now, consider instead the object Mnþ1 ¼
Ãnþ1 − Anþ1, which has a vanishing leading piece. This is
important because a nonzero order OðzmÞ has a contribu-
tion to order Oðzmþ1Þ through momentum conservation
(see [5] for a discussion). Then, the subleading piece in the
soft limit has the form,

δ1Mnþ1 ¼
ϵμqνBμν

n ðpn−2Þ
q · p1

þ ϵμqνB̄μν
n ðpn−2Þ

q · pn
; ð8Þ

where we omitted the terms with double poles which are
directly ruled out by gauge invariance. The tensors Bμν

n , B̄μν
n

have k ¼ n − 2, and so, our second assumption rules them
out. At higher orders in the soft limit, we always get
δpMnþ1 ∼ Xμν

n ðpkÞ for some tensor X, which is then
ruled out, and all these terms must vanish. The second
assumption itself can be proven by an identical inductive
reasoning.
It is interesting that in these arguments it suffices to

check gauge invariance only in n − 1 legs to uniquely fix
the answer. This observation explains why the object
factorizes on poles. We would like to determine what
our unique gauge invariant looks like on a factorization
channel. Since there is already a unique gauge invariant
only checking invariance on n − 1 legs, we can take “left”
and “right” gauge invariants ignoring gauge invariance on
the intermediate line; gluing together these unique objects
then gives us something that is gauge invariant in all n legs
and therefore must match the unique n point gauge
invariant on this channel. This shows that gauge invariants
factorize on poles, allowing us to see the emergence of
unitarity very directly.
Locality from gauge invariance.—We showed that uni-

tarity is a derived property of gluon amplitudes if we
demand only locality and gauge invariance. But we can go
even further and even remove the requirement of locality.
We again consider a sum of terms (6), but now, we give up
on the assumption that individual terms (3) have poles
which correspond to cubic diagrams. We just consider any
cyclic poles P2

ij ¼ ðpi þ piþ1 þ � � � þ pjÞ2 and even allow
powers ðP2

ijÞ#. The only assumption is that the total number
of poles in the denominator is n − 3. For example, for the
n ¼ 5 case, we allow terms of the form

Nð1Þ
5

s212
;

Nð2Þ
5

s12s23
: ð9Þ

While the double (or higher) poles can come from the
Lagrangians with a noncanonical kinetic term, the second
term cannot be associated with any local interaction as it
does not correspond to any “diagram” of particle scattering.
We now conjecture that if we impose gauge invariance

on the general sum of all possible terms with n − 3 cyclic
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poles (6), the only solution is the n point scattering
amplitude An. We have directly checked this conjecture
by brute force up to n ¼ 5, which is already highly
nontrivial.
Gravity and BCJ.—The story for gravitons is essentially

identical. We consider cubic graphs now with no ordering
of external legs, and for each graph, we associate an
expression (3). The numerator NðΓÞ

n is a polynomial of
degree 2ðn − 2Þ in momenta pi, and it also depends on n
polarization tensors ϵμν ¼ ϵμϵν.
Imposing the gauge invariance condition in n − 1 exter-

nal legs we get a unique solution: the graviton amplitude.
Therefore, unitarity emerges from locality and gauge
invariance like for Yang-Mills theory, and the proof follows
identical steps. The stronger statement also holds in this
case: even without assuming a cubic structure, the gravity
amplitude is the unique gauge invariant object.
We can also go back to the gluon case and consider all

possible P2 poles, not just the ones with cyclic momenta,
but now choosing n − 3 of all possible cubic graph poles.
Imposing gauge invariance, we conjecture ðn − 2Þ! solu-
tions corresponding to different cyclic orderings of Yang-
Mills amplitudes, modulo the relations following from the
Uð1Þ decoupling and KK relations.
The uniqueness of gauge invariants also gives a natural

proof for the BCJ relation [6] between the Yang-Mills and
gravity amplitudes. If we write the Yang-Mills amplitude in
the BCJ form, such that the kinematical numerators satisfy
the same Jacobi identities as the corresponding color
factors, then the gravity amplitude is given by the simple
replacement of the color factor by one more power of the
kinematical numerator,

AðYMÞ
n ¼

X
Γ

NΓcΓ
DΓ

→ AðGRÞ
n ¼

X
Γ

N2
Γ

DΓ
: ð10Þ

The reason is very simple. Under a gauge variation, the NΓ
change by some ΔΓ; the invariance of the full amplitudeP

ΓcΓΔΓ=DΓ ¼ 0 can then only be ensured by the Jacobi
relations satisfied by cΓ. But if we now replace cΓ with
some kinematical factor NΓ which satisfies the same
identities, the gravity-gauge invariance check follows in
exactly the same way as for YM. Thus, the object with
cΓ → NΓ is a gravitational gauge invariant with 2ðn − 2Þ
powers of momenta in the numerator; since this object is
unique, it gives the gravity amplitude.
Gauge invariance → soft limits and Goldstone

theories.—Because of gauge invariance, we have seen that
Yang-Mills and gravity amplitudes are much more special
than garden-variety scalar theories. But recent investiga-
tions revisiting some classic aspects of Goldstone scattering
amplitudes have revealed a similarly special property of
scalar theories. In the case of the nonlinear sigma model,
soft limit behavior in the form of the Adler zero [7]
supplements unitarity and locality in certain cases to

completely fix the tree-level S matrix [8–10]. In general,
we can ask what are the minimally derivatively coupled
theories whose amplitudes have a vanishing soft limit
An ¼ 0 forpj → 0? For linear vanishing, the answer appears
to be nonlinear sigma model (NLSM). If we demand a
quadratic vanishing An ¼ Oðp2Þ, this uniquely specifies the
Dirac-Born-Infeld (DBI) theory and An ¼ Oðp3Þ gives a
special Galileon [8,11]. The soft limit behavior was then
used in the recursion relations to reconstruct the amplitudes
in these theories, supplementing locality and unitarity.
In the spirit of our previous statements, we can make

similar claims for these theories. Like for Yang-Mills,
we can strip the flavor factor in the NLSM amplitude[12]
and consider cyclically ordered amplitudes An. Now, the
individual Feynman diagrams are quartic diagrams Q, and
we can write an expression for each,

DðQÞ
n ¼ NðQÞ

n ðpn−2Þ
P2
1P

2
2…P2

n=2−2
: ð11Þ

Imposing the soft limit vanishing then requires summing
over all Feynman diagrams as only the amplitude has this
property. Now, we consider a general numerator,

NðQÞ
n ðpn−2Þ ¼

X
k

αkΔk; ð12Þ

where Δk is the product of n=2 − 1 terms of the form
sij ¼ ðpi · pjÞ.
We claim that imposing the soft limit vanishing in n − 1

legs fixes all coefficients completely, leaving a unique
expression, the n point amplitude in the NLSM. The proof
for this statement uses a double soft limit in which two of
the momenta go to zero. In that case, the amplitude does not
vanish but rather gives a finite expression, the analogue of
the Weinberg soft factor. One can then prove the statement
in a similar way to the soft limit argument for gluons and
gravitons.
The stronger claim is that we do not have to consider

quartic graphs but rather take any expression with n=2 − 2
factors in the denominator. Then imposing the soft limit
still fixes the result uniquely, and we can see both locality
and unitarity arising from the vanishing in the soft limit.
We can make analogous claims for the DBI and special

Galileon. The power counting of the numerators is n − 2,
respectively 3n=2 − 3, factors sij. We have to consider all
quartic graphs with no ordering. Imposing the Oðp2Þ,
respectively Oðp3Þ, vanishing in the soft limit of n − 1 legs
we get the corresponding amplitude as the unique solution.
The stronger statement again removes the requirement of
poles associated with quartic diagrams.
Outlook.—There are a number avenues for further explo-

ration suggested by this work. First, all of our analyses
find objects that would be gauge invariant in any number of
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dimensions. But in a specific spacetime dimensionality d,
there are further “gram determinant” conditions arising from
the linear interdependence of momenta, which could, in
principle, affect the uniqueness results.
Provided that the absence of dimension-specific invar-

iants can be established, we have found a simple conceptual
understanding of a fact that has resisted a transparent
understanding for many years. There is an apparently
straightforward proof that “amplitudes that factorize prop-
erly” must match Feynman diagrams, by using Cauchy’s
theorem and the BCFW deformation [13] to show that if
functions have the same singularities they must be equal.
However, this famously needs a proof of an absence of
poles at infinity on the Feynman diagram side, which can
only be shown by a relatively indirect argument far afield
from on-shell physics [14].
The uniqueness of gauge invariance implies further

properties of the S matrices. In particular, it is trivial to
show that it is impossible to have interactions of higher spin
particles. The standard modern S-matrix argument relies on
the factorization of the four point amplitude which is
inconsistent in all three channels for s > 2 [15,16]. In
our story, we do not use factorization. Gauge invariance
alone implies that any amplitude with cubic graphs needs a
Weinberg soft factor, and that is impossible to construct for
higher spins.
Our results also illuminate why the CHY construction

[17] of YM and gravity amplitudes must match the correct
answer, without any detailed analysis of the poles and
factorization structure. We simply observe that the poles of
the CHY formula are local, and the expressions are gauge
invariant expressions, with the correct units to match the
correct numerator power counting.
Finally, while the claims in this Letter are mathemati-

cally nontrivial and certainly have physical content, their
ultimate physical significance is not clear. It is intriguing
that locality and unitarity can be derived from the
redundancy, inverting the usual logic leading to the need
for gauge invariance. If this is more than a curiosity, it
would be interesting to look for an abstract underlying
system that gives rise to an effective description—either

exactly or approximately—with a gauge redundancy from
which locality and unitarity emerge in the way we have
seen here.
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