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We consider the set of all initial states within a microcanonical energy shell of an isolated many-body
quantum system, which exhibit an arbitrary but fixed nonequilibrium expectation value for some given
observable A. On the condition that this set is not too small, it is shown by means of a dynamical typicality
approach that most such initial states exhibit thermalization if and only if A satisfies the so-called weak
eigenstate thermalization hypothesis (wETH). Here, thermalization means that the expectation value of A
spends most of its time close to the microcanonical value after initial transients have died out. The wETH
means that, within the energy shell, most eigenstates of the pertinent system Hamiltonian exhibit very
similar expectation values of A.
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The eigenstate thermalization hypothesis (ETH) plays a
pivotal role in numerous recent investigations of thermal-
ization in isolated many-body quantum systems [1,2],
comparable to the role of the ergodic hypothesis in the
classical realm. In essence, the ETH postulates that energy
eigenstates with sufficiently close energy eigenvalues
exhibit very similar expectation values [3–6]. It is generally
taken for granted that the ETH guarantees thermalization
for any initial state with a macroscopically well-defined
system energy. Whether the ETH is also necessary for
thermalization is a question of considerable current interest
[2,7–13]. Here, we will provide examples implying that the
ETH (in its most common version) should be considered
neither as sufficient nor as necessary for thermalization
without any further specification of the admitted initial
states.
Accordingly, we will focus on a suitable subset of initial

states, namely, all pure states which exhibit the same
arbitrary but fixed initial expectation value for some given
observable A. In the most common case, this subset is still
“reasonably large” (in a mathematically precisely defined
sense) and entails quite remarkable dynamical typicality
and concentration of measure properties, as detailed in
Refs. [14,15]. Here, we further develop these concepts and
show that a “weak” version of the ETH [16–20] is both
necessary and sufficient in order that the vast majority of
those initial states exhibit thermalization with respect to the
observable A at hand. Whether or not a given system
thermalizes and whether or not it satisfies the ETH are very
important issues in themselves, but they are not at the focus
of our present work. Rather, our main focus is on how the
two issues are connected.
Based on related preliminary conjectures [21,22], the

ETH was originally proposed in the context of chaotic
systems in the semiclassical limit [4,5]; see also [23–26]. In
fact, for so-called macroscopic observables, the ETH is

already buried in von Neumann’s work [27,28], as pointed
out in Refs. [8,29–31]. More recent analytical investiga-
tions of the ETH often focus on (sums of) local observ-
ables, subsystems in contact with a heat bath, spatially
discrete lattice models, or Hamiltonians with bound spectra
[7,9,10,12,16]. In view of the quite extensive numerical
explorations [1,2] and of Deutsch’s results based on
random matrix theory [3,32], this Letter pursues the
standpoint that the ETH is an interesting and relevant
concept beyond any such particular class of systems and
observables.
As usual [1,2], the isolated many-body system is

described by a Hamiltonian H with discrete eigenvalues
En and eigenvectors jni. Focusing on an arbitrary but fixed
microcanonical energy interval [E − ϵ, E], the number of
energies En in this interval is denoted by N, and we choose
the indices so that n ∈ f1;…; Ng for all those En’s. The
width ϵ is assumed to be small on the macroscopic scale
(well-defined system energy) but large on the microscopic
scale. For many-body systems with f ≫ 1 degrees of
freedom, N is then exponentially large in f [28]. The
energy eigenstates fjnigNn¼1 span a Hilbert space H, called
the microcanonical energy shell.
Considering any given jψi ∈ H as an initial state jψð0Þi,

it evolves in time according to jψðtÞi ¼ Utjψi with
Ut ≔ e−iHt=ℏ, yielding for an arbitrary observable A the
expectation value

hψðtÞjAjψðtÞi ¼ hψ jAtjψi; ð1Þ

At ≔ U†
t AUt ¼

XN

m;n¼1

AmneiðEm−EnÞt=ℏjmihnj; ð2Þ

where Amn ≔ hmjAjni. In cases where the Hamiltonian H
exhibits degeneracies, its eigenvectors jni are chosen so
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that the matrix Amn is diagonal within every eigenspace.
Denoting averages over all times t ≥ 0 by an overbar, it
follows that

At ¼
XN

n¼1

Annjnihnj; ð3Þ

and for the time-averaged expectation value in (1) that

Aψ ≔ hψðtÞjAjψðtÞi ¼ hψ jAtjψi ¼
XN

n¼1

jhnjψij2Ann: ð4Þ

The most common or “strong” version of ETH (sETH)
states [1,2] that the diagonal matrix elements Ann assume
very similar values for all n ∈ f1;…; Ng. Consequently,
the long time average in (4) is very well approximated by
the microcanonical expectation value Amc ≔ TrfρmcAg,
where ρmc≔IH=N and IH≔

P
N
n¼1 jnihnj (identity on H).

Since this is precisely the prediction of textbook statistical
mechanics for our system at thermal equilibrium, and since
this property applies to any initial condition jψi ∈ H, it is
tempting to conclude that the sETH implies thermalization.
However, one can readily tailor initial conditions and
observables, which fulfill the sETH and Aψ ≃ Amc, while
the expectation values in (1) maintain non-negligible
oscillations ad infinitum; i.e., they do not exhibit thermal-
ization in any meaningful sense. For example, jψi¼
ðj1iþj2iÞ= ffiffiffi

2
p

, A12¼A21¼1, and Amn ¼ 0 for all other m,
n yields hψðtÞjAjψðtÞi ¼ cosðωtÞ with ω ≔ ðE2 − E1Þ=ℏ.
One may object that this example is experimentally unreal-
istic [33] and incompatible with the generalized ETH
postulated in Ref. [5], yet there seems to be no argument
which rigorously disqualifies all counterexamples of this
kind. Accordingly, the sETH should not be considered as
sufficient for thermalization without any further conditions
regarding the observables or the initial conditions.
Henceforth, we adopt the standard notion of thermal-

ization from Refs. [5,7,27,28,33,34], requiring that not only
the time-averaged but also the instantaneous expectation
values in (1) must be close to Amc for the vast majority of all
sufficiently large times t, i.e., after initial transients have
died out. Note that a small fraction of exceptional times t is
unavoidable, e.g., due to quantum revivals, caused by the
quasiperiodicity of At in (2). In addition to Aψ ≃ Amc, we
thus require that

ðhψ jAtjψi − AψÞ2 ≪ 1: ð5Þ
As demonstrated, e.g., in Refs. [33–38], an arbitrary
jψi ∈ H satisfies (5) under the sufficient condition

Sψ ≔
XN

n¼1

jhnjψij4 ≪ 1; ð6Þ

where we tacitly restricted ourselves to the generic case
[7,27,33,34] that the energy differences Em − En are finite
and mutually different for all pairs m ≠ n (generalizations

are possible [35–38] but omitted here for the sake of
simplicity). We thus can conclude that the sETH together
with (6) are sufficient conditions for thermalization.
On the other hand, we will later provide examples which

exhibit thermalization but violate the sETH. Altogether, the
sETH alone is thus neither sufficient nor necessary for
thermalization: We have to modify or supplement the sETH
criterion, or we have to admit exceptions and show that they
are “rare” in some suitable sense. In the following, we work
out an approach along these lines.
To begin with, we note that the original Hilbert space of

the system is usually much larger than the energy shell H
and that A andH are a priori operators on that larger space.
Accordingly, IH ≔

P
N
n¼1 jnihnj may also be considered as

a projector onto H and A0 ≔ IHAIH as the restriction or
projection of A ontoH (and likewise forH). But since only
vectors jψi with support in H are considered in (1), one
readily sees that every single term in (1)–(6) remains
exactly the same if we replace A by A0. In particular, Ann ¼
A0
nn for all n ∈ f1;…; Ng. On the other hand, the eigen-

values and eigenvectors of A0, henceforth denoted as an and
jφni, respectively, are, in general, different from those of A.
From now on, we always work with A0, but—for the sake of
convenience and since it actually does not matter in most
formulas—we again omit the prime symbol.
Possibly after adding a trivial constant to the observable

and multiplying it by a constant factor, we can and will
assume that

TrfAg ¼ 0; ð7Þ

kAk ¼ 1; ð8Þ

where Trf·g is the trace inH and k · k the operator norm. It
follows that amax ≔ maxnan > 0 and amin ≔ minnan < 0.
For an arbitrary but fixed a ∈ ð0; amaxÞ, we define

gðxÞ ≔ 1

N

XN

n¼1

1

1þ xða − anÞ
: ð9Þ

One readily verifies that gð0Þ ¼ 1, g0ð0Þ ¼ −a < 0, gðxÞ →
∞ as x approaches xmax ≔ 1=ðamax − aÞ from below, and
g00ðxÞ > 0 for all x ∈ ½0; xmaxÞ. These properties imply that
there must be exactly one x ∈ ð0; xmaxÞwith gðxÞ ¼ 1. This
x value is henceforth denoted as yðaÞ. One thus can
conclude that yðaÞ > 0, that

pn ≔
1

N
1

1þ yðaÞða − anÞ
> 0 ð10Þ

for all n ¼ 1;…; N, and that

XN

n¼1

pn ¼ 1: ð11Þ
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Similarly, for a ∈ ðamin; 0Þ there is a unique yðaÞ < 0
which satisfies (10) and (11), while yðaÞ must be zero for
a ¼ 0. Finally, one can deduce from (10) and (11) by
means of a straightforward calculation [39] that

XN

n¼1

anpn ¼ a ð12Þ

for any given a ∈ ðamin; amaxÞ.
Next, we introduce an ensemble of random vectors

jχi ∈ H via

jχi ¼
XN

n¼1

cnjχni; ð13Þ

where fjχnigNn¼1 is any orthonormal basis of H and where
the real and imaginary parts of the cn’s are independent,
Gaussian-distributed random variables of mean zero and
variance 1=2N. Denoting averages over the cn’s by ½…�c, it
follows that ½c�mcn�c ¼ δmn=N for all m; n ∈ f1;…; Ng.
The random vectors (13) are thus normalized on the
average, ½hχjχi�c ¼ 1, but not individually. Moreover, the
random vector ensemble is invariant under arbitrary unitary
transformations of the basis fjχnigNn¼1 (all its statistical
properties remain unchanged). All bases are thus equivalent
and the ensemble is unbiased. In terms of this ensemble, yet
another ensemble of random vectors jϕi is defined via

jϕi ≔
ffiffiffiffi
N

p
ρ1=2jχi; ð14Þ

ρ ≔
XN

n¼1

pnjφnihφnj; ð15Þ

where the jφni have been introduced above (7) and where
ρ1=2 ≔

P
N
n¼1

ffiffiffiffiffiffi
pn

p jφnihφnj, implying ðρ1=2Þ2 ¼ ρ. Note
that ρ is Hermitian, positive [see (10)], and of unit trace
[see (11)], i.e., a well-defined density operator.
Given any Hermitian operator B∶H → H, one readily

can infer from (13)–(15) that [40]

μB ≔ ½hϕjBjϕi�c ¼ TrfρBg; ð16Þ

σ2B ≔ ½ðhϕjBjϕi − μBÞ2�c ¼ TrfðρBÞ2g: ð17Þ

Taking advantage of the Cauchy-Schwarz inequality [41],
TrfðρBÞ2g can be upper bounded by Trfρ2B2g. Evaluating
the trace by means of the eigenbasis of B, one thus obtains

σ2B ≤ kBk2Trfρ2g: ð18Þ

In the following, we restrict ourselves to the case

deff ≔ 1=Trfρ2g ≫ 1: ð19Þ

As observed in Ref. [34], the effective dimension deff tells
us how many pure states contribute appreciably to the
mixture ρ. Indeed, one readily finds—similarly as in
Ref. [40]—that ½jϕihϕj�c ¼ ρ. Moreover, if pn ¼ 1=M
for M of the weights pn in (15), then deff ¼ M, and the
jϕi in (14) arise by unbiased sampling of vectors within an
M-dimensional subspace of H. In other words, deff
quantifies the “diversity” of random vectors jϕi contrib-
uting to ρ, and (19) ensures that the ensemble of random
vectors in (14) is not “too small.”Moreover, it is reasonable
to expect that, unless a is very close to amax or amin, many
pn’s will notably contribute in (12), and hence the effective
dimension of ρ will be large. This expectation is quanti-
tatively confirmed in Supplemental Material [42], showing
that deff is, in fact, exponentially large in the system’s
degrees of freedom under quite general conditions.
For B ¼ IH, it follows from (16)–(19) that ½hϕjϕi�c ¼ 1

and ½ðhϕjϕi − 1Þ2�c ≪ 1. The vast majority of all jϕi in
(14) thus exhibit norms very close to unity. Next, by
choosing B ¼ A, it follows with (12), (15), and (16) that
μA ¼ a and with (8) and (17)–(19) that σ2A ≪ 1. The vast
majority of all jϕi in (14) thus exhibit expectation values
hϕjAjϕi very close to the preset value a. Likewise, by
choosing B ¼ At and observing that kAtk ≤ kAk, one can
infer from (8) and (17)–(19) that the vast majority of all jϕi
in (14) yield time-averaged expectation values Aϕ in (4)
very close to TrfρAtg. Finally, one can show by similar
calculations as in Ref. [40] that Sϕ from (6) satisfies
½Sϕ�c ≤ 2=deff . Observing (19) and Sϕ ≥ 0, it follows that
Sϕ must be very small for most jϕi’s from (14).
So far, the initial states jϕi in (14) are, in general, not

normalized. But, as seen above, the vast majority among
them are almost of unit length. Hence, if we replace for
every given jχi the concomitant jϕi in (14) by its strictly
normalized counterpart

jψi ≔ hχjρjχi−1=2ρ1=2jχi; ð20Þ

then the “new” expectation values hψ jAjψi and hψ jAtjψi
will mostly remain very close to the “old” ones, i.e., to
hϕjAjϕi and hϕjAtjϕi, respectively. Likewise, Sψ must
remain very small for most jψi’s. More precisely, one can
show [42] that a vector jψi, randomly sampled according to
(13) and (20), satisfies simultaneously the three conditions
jhψ jAjψi − aj ≤ 2δ, jhψ jAtjψi − TrfρAtgj ≤ 2δ, and Sψ ≤
4δ with probability P ≥ 1–6δ, where δ ≔ d−1=3eff is expo-
nentially small in the system’s degrees of freedom.
In conclusion, the vast majority of all initial states

jψð0Þi ≔ jψi from (20) exhibit initial expectation values
hψð0ÞjAjψð0Þi very close to the preset value a in (9) and
(10), and the time average in (4) satisfies very well the
approximation

Aψ ¼ TrfρAtg: ð21Þ
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In other words, the long time limit (4) is for most jψi very
close to one and the same value, given by the right-hand
side of (21). As discussed below (4), we furthermore
require as a necessary condition for thermalization that
those very similar long time averages of most jψi’s must be
close to the microcanonical expectation value Amc.
Exploiting (3) to infer Amc ¼ TrfρmcAtg [43], it follows
that the right-hand side of (21) must satisfy

TrfρAtg ¼ TrfρmcAtg ð22Þ

in a very good approximation. Recalling that under the
same premise (19) most jψi’s also satisfy (6), we can
conclude that (19) and (22) are sufficient to guarantee that
most jψi’s from (20) exhibit thermalization.
The main feature of the random vector ensemble (20) is

that the expectation value hψ jAjψi is almost equal to a for
most jψi’s. As can be inferred from Ref. [15], this ensemble
yields results for the statistics (mean and variance) of Aψ

and Sψ which are very similar to those for an ensemble,
where all normalized vectors, whose expectation value is
strictly equal to a, are realized with equal probability (and
all other vectors are excluded). We thus can conclude that
most initial states jψi ∈ H with hψ jAjψi ¼ a exhibit
thermalization, provided (19) and (22) are fulfilled.
In principle, the observable A and the value of a uniquely

determine yðaÞ in (10) and (11). Hence, ρ in (15) follows
and condition (22) can be checked. In practice, a general,
explicit solution of all the necessary equations seems not
possible. We thus content ourselves with a series expansion
in powers of a. Since yð0Þ ¼ 0 [see below (11)], we can
expand yðaÞ as y0ð0Þaþ y00ð0Þa2=2þ � � � and the denom-
inator in (10) as a geometric series. Substituting all this into
(11) and comparing terms with equal powers of a yields
equations for y0ð0Þ; y00ð0Þ;… which can be iteratively
solved. As a result, Eq. (15) assumes the form

ρ ¼ ρmc þ
1

N

X∞

k¼1

½yðaÞðA − aÞ�k; ð23Þ

yðaÞ ¼ ð1=m2Þa − ðm3=m3
2Þa2 þOða3Þ; ð24Þ

mk ≔
1

N

XN

n¼1

ðanÞk ¼ TrfρmcAkg: ð25Þ

Taking into account Eq. (3), this finally yields

TrfρAtg − TrfρmcAtg ¼ a
XN

n¼1

ðAnnÞ2
m2N

þOða2Þ: ð26Þ

In view of the approximation (22), the coefficients on the
right-hand side of (26) must be zero (or very small)
separately for every power of a. Together with (25), we
thus can conclude that

1

N

XN

n¼1

ðAnnÞ2 ≪ TrfρmcA2g ≤ 1; ð27Þ

where we utilized (8) in the last step. This is the main result
of this Letter. It implies that most Ann’s must be very small
[43]. In other words, the values of hnjAjni must be very
similar to each other for most energy eigenvectors jni with
eigenvalues En in the considered energy interval [E − ϵ, E].
Following Refs. [16–20], the latter property is denoted as
the weak ETH (wETH). In Ref. [11], somewhat similar
results have been obtained for some particular initial
(mixed) states which arise by certain very small perturba-
tion of a canonical density operator [44].
In short, we found that typicality of thermalization

implies the wETH. In the opposite case, i.e., when most
jψi’s do not exhibit thermalization, then most of them still
approach very similar long time averages according to (21).
However, (22) is no longer fulfilled; hence, the right-hand
side of (26) is non-negligible and the wETH is violated. In
other words, the wETH implies typicality of thermalization.
As announced below (6), a system which violates the sETH
thus exhibits thermalization provided it still satisfies the
wETH. Moreover, it is noteworthy that—at least for not too
large a values—the typical deviation from the thermal
expectation value Amc ¼ TrfρmcAtg ¼ 0 [43] in (26) exhib-
its the same sign as the initial expectation value hψ jAjψi ¼
a itself.
Clearly, in all those conclusions, Eq. (26) plays a pivotal

role, connecting the decisive quantity for thermalization
(left-hand side) with the essential quantifier of the wETH
(sum on the right-hand side). Our above line of reasoning
thus has the virtue of being concise and “natural.” Its
shortcoming is that the arguments are not mathematically
rigorous. [In fact, already the convergence of the expansions
in (23) and (24) may strictly speaking be questionable.] A
complementary, more rigorous but less enlightening line of
reasoning is provided as Supplemental Material [42].
In conclusion, the weak ETH has been established as a

necessary and sufficient prerequisite for thermalization in
isolated many-body quantum systems in the following
sense: The vast majority of all pure states, which exhibit
the same initial expectation value for some observable A,
closely approach the pertinent microcanonical expectation
value of A for practically all sufficiently large times. It is
remarkable that also in several other related studies it is the
weak rather than the strong ETH which naturally arises
[11,24,26,45]. Note that the necessity of the (weak or
strong) ETH for thermalization is not something that one
might have expected a priori due to some intuitively quite
obvious reasons [2,9]. For instance, Peres argues [46] that
generic (chaotic) systems should entail pseudorandom
Ann’s, which are statistically independent of the jhnjψij2
in (4) for most jψi. If this quite reasonable-looking
expectation was correct, then the right-hand side of (4)
could be well approximated by TrfρmcAg, implying
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thermalization even if the (weak or strong) ETH were
violated. In contrast, our key relation (26) shows that the
jhnjψij2 and the Ann in (4) must be “correlated” in a very
subtle manner, except for the “trivial case” that most of the
Ann’s are very similar to each other, i.e., unless A satisfies
the weak ETH in the first place. Put differently, whenever
typical nonequilibrium initial states do not exhibit thermal-
ization, then such correlations must be a generic feature.
Indeed, they can be seen in numerical examples [6], but
their intuitive physical origin previously appeared to be a
mystery to the present author. Our dynamical typicality
approach provides at least a first step towards its resolution:
In order to exhibit any nonthermal expectation value, most
initial states jψi in (20) must necessarily acquire some sort
of “correlation” with A via (10) and (15).
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