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Discrete time crystals have attracted considerable theoretical and experimental studies but their potential
applications have remained unexplored. A particular type of discrete time crystals, termed “Majorana time
crystals,” is found to emerge in a periodically driven superconducting wire accommodating two different
species of topological edge modes. It is further shown that one can manipulate different Majorana edge
modes separated in the time lattice, giving rise to an unforeseen scenario for topologically protected gate
operations mimicking braiding. The proposed protocol can also generate a magic state that is important for
universal quantum computation. This study thus advances the quantum control in discrete time crystals and
reveals their great potential arising from their time-domain properties.
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Introduction.—The idea of time crystals was first coined
by Wilczek in 2012 [1]. Despite the existence of a no-go
theorem, which prohibits time crystals to arise in the
ground state or equilibrium systems [2], time crystals in
periodically driven systems, named discrete time crystals
(DTCs), have recently attracted considerable interest
[3–10]. Two experimental realizations of DTCs have been
reported [11,12].
Here we explore the potential applications of DTCs as

exoticphasesofmatter [13].Specifically,DTCsareexploited
to perform topologically protected quantum computation
[14,15].To that end, oneneeds to first findaparticular typeof
DTC that can simulate non-Abelian, e.g., Ising [14–18] or
Fibonacci [14,15,19,20] anyons. Ising anyons can be
described in the language of Majorana fermions in one-
dimensional (1D) superconducting chains [21–23].
DTCs have recently been proposed in a periodically

driven Ising spin chain [8]. As learned from the mapping
between 1D superconducting chains and static spin
systems [16,24–26], we expect the emergence of DTCs
in a periodically driven Kitaev superconducting chain.
Indeed, there period-doubling DTCs are obtained using
the quantum coherence between two types of topologically
protected Floquet Majorana edge modes [27–29]. Such
DTCs are termed Majorana time crystals (MTCs) below.
Next, a scheme is proposed to physically simulate the non-
Abelian braiding of a pair of Majorana fermions [26,30–34]
at two different time lattice sites. We also elucidate how our
scheme can be used to generate a magic state, which is
necessary to perform universal quantum computation
[35–39]. These findings open up a new concept in
simulating the braiding of Majorana excitations and should
stimulate future studies of the applications of DTCs.
Majorana time crystals.—Consider a periodically driven

system HðtÞ of period T. For the first half of each
period, HðtÞ is a 1D Kitaev chain with Hamiltonian

H1 ¼
P

N−1
j ð−Jjc†jþ1cjþΔjc

†
jþ1c

†
j þH:c:Þþ μ1

P
N
j c

†
jcj

[22], and for the second half of each period,
HðtÞ ¼ H2 ¼ μ2

P
N
j c†jcj. Here cj (c

†
j ) is the annihilation

(creation) operator at site j, Jj and Δj are, respectively, the
hopping and pairing strength between site j and jþ 1, and
μ1 and μ2 are the chemical potential at different time steps.
Throughout this Letter, we work in a unit system with
ℏ ¼ 1. Unless otherwise specified later, we take Jj ¼ J and
Δj ¼ Δ for all j ¼ 1;…; N − 1 for our general discussions.
For later use, we also define the one-period propagator
U ¼ T exp ð− R

T
0 iHðt0Þdt0Þ, where T is the time ordering

operator. One candidate for H1 is an ultracold atom system
[27,29], realizable by optically trapping 1D fermions inside
a three-dimensional (3D) molecular Bose-Einstein conden-
sate (BEC). In such an optical lattice setup, the hopping
term is already present due to the two Raman lasers
generating the optical lattice, while the pairing term can
be induced by introducing a radio frequency (rf) field
coupling the fermions with Feshbach molecules from the
surrounding BEC reservoir. Realizing the periodic quench-
ing between H1 and H2 is also possible [27,29].
Our motivation for considering the above model system

depicted by HðtÞ is as follows. If J ¼ Δ ¼ Δ� and μ1 ¼ 0,
thenHðtÞ can be mapped to a periodically driven Ising spin
chain [40], which is known to exhibit DTCs [8]. We thus
expect HðtÞ to support DTCs. That is, there exists some
observable such that, for a class of initial states, the
oscillation in the expectation value of this observable does
not share the period of HðtÞ, but exhibits a period of nT,
with n > 1 being stable against small variations in the
system parameters. Furthermore, in the thermodynamic
limit, the oscillation of this observable with period nT
persists over an infinitely long time.
DTCs in our model emerge from the interplay of periodic

driving, hopping, and p-wave pairing. In particular, HðtÞ
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yields a number of interesting Floquet topological phases
manifested by a varying number of edge modes, with their
corresponding eigenphases of U being 0 or π. These
eigenmodes of U localized at the system edge are often
called Floquet zero [27–29] or π edge modes [27,28,
48–52], possessing all the essential features of a
Majorana excitation [40]. For example, by taking μ2T ¼
JT ¼ ΔT ¼ π and μ1 ¼ 0, the eigenphases of U can be
explicitly solved, which yield both Majorana zero and π
modes. Given that the Majorana zero (π) mode develops an
additional phase 0 (π) after one driving period T, a
superposition of Majorana zero and π modes will evolve
as a superposition, but with their relative phase being π (0)
after odd (even) multiples of T. That is, the ensuing
dynamics yields period-doubling oscillations for a generic
observable. Further, because these edge modes are pro-
tected by the underlying topological phase, they do not rely
on any fine tuning of the system parameters [40], yielding
the necessary robustness for DTCs.
Define two Majorana operators γAj ¼ cj þ c†j and γBj ¼

iðcj − c†jÞ at each chain site j, with γAj ¼ ðγAj Þ†, ðγAj Þ2 ¼ 1

and similar equalities for γBj , as well as commutation
relations fγAj ; γBl g ¼ 2δABδjl. In particular, before the
periodic driving is turned on, the choice of system
parameters above yield a Majorana zero mode
Ψð0Þ ¼ γA1 . Once the driving is turned on, Ψð0Þ becomes
a linear superposition of Majorana zero and π modes and
will then evolve nontrivially in time. At time t, it can be
written in general as ΨðtÞ ¼ P

j

P
l¼A;B cj;lðtÞγlj, whereP

j

P
l¼A;B jcj;lðtÞj2 ¼ 1. To demonstrate how DTCs can

be observed in the system, special attention is paid to the
quantity ZðtÞ ¼ jc1;AðtÞj2 − jc1;BðtÞj2, which measures the
difference between the weight of γA1 and γB1 in ΨðtÞ.
Figures 1(a)–1(c) show Z vs time in several cases,

whereas Figs. 1(d)–1(f) show the associated subharmonic
peak in the power spectrum, defined as Z̃ðωÞ ¼P

nZðtÞ exp ðinωTÞ. jZ̃ðωÞj2 is seen to be pinned at
ω ¼ π=T, confirming the emergence of period-doubling
DTCs. Under the special system parameter values chosen
above, Ψð0Þ comprises an equal-weight superposition of
Majorana zero and π modes (shown below) and will
therefore undergo period-doubling oscillations between
two Majorana operators γA1 and γB1 as time progresses.
As Figs. 1(b) and 1(c) show, tuning the values of μ1, J, Δ,
and μ2 away from these special values still yields the same
period-doubling oscillations for a long timescale, accom-
panied by some beatings in the time dependence, which
diminishes as the system size increases. These results thus
justify the term MTC to describe such DTCs.
Simulation of braiding protocol.—Consider now four

Majorana modes in our model, labeled as γAL, γ
A
R, γ

B
L, and γ

B
R,

with γAL (γBL) and γ
A
R (γBR) representing Majorana edge modes

localized in space, at the left and right edges, respectively,
and in time, at any even (odd) integer multiple of period.

That is, γBL and γBR are obtained by evolving, respectively, γAL
and γAR over one period. During our protocol, γAL and γBL will
be adiabatically manipulated to simulate braiding, while γAR
and γBR are left intact. Such a nonconventional operation is
schematically described by Fig. 2. Physical implementation
of the adiabatic manipulation in the aforementioned opti-
cal-lattice context [27] can be done by slowly tuning the
strength of the Raman lasers and the rf field.
Before presenting our protocol, we will first recast H1

and H2 in terms of Majorana operators as (focusing on the
first three lattice sites and taking μ1 ¼ 0)

FIG. 1. (a)–(c) Stroboscopic time evolution of Z evaluated at
even (red) and odd (blue) integer multiples of T, given that
Ψð0Þ ¼ γA1 . The system parameters are (a) μ1T ¼ 0,
JT ¼ ΔT ¼ μ2T ¼ π, N ¼ 50, (b) μ1T ¼ 0.1, μ2T ¼ 3,
ΔT ¼ 1.5JT ¼ 4.2, N ¼ 50, (c) same as (b) but with
N ¼ 200. (d)–(f) Power spectrum associated with (a)–(c) shows
a clear subharmonic peak at ω ¼ π=T.

FIG. 2. Because of two nonequivalent time lattice sites labeled
A and B, braiding of two left Majorana modes separated in time
can be simulated by certain manipulations of the system. (Inset)
Details of our protocol. Red and green circles denote the
Majorana modes localized at even and odd multiples of of the
period, respectively, blue ellipses represent the lattice sites, empty
circles denote the rest of the Majorana operators, and black lines
denote the coupling between two Majorana modes due to H1.
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H1 ¼ iðΔ1=2 − J1=2ÞγA1 γB2 þ iðΔ1=2þ J1=2ÞγB1 γA2
þ iImðΔ2=2 − J2=2ÞγA2 γA3 þ iReðΔ2=2þ J2=2ÞγB2 γA3
þ iImðΔ2=2þ J2=2ÞγB2 γB3 þ iReðΔ2=2 − J2=2ÞγA2 γB3
þ � � � ; ð1Þ

and H2 ¼ −ðμ2=2Þð1þ iγA1 γ
B
1 Þ þ � � �, where J1, Δ1, J2,

andΔ2 are subject to adiabatic manipulations, during which
J2 and Δ2 may be complex, while Jj and Δj for j ≠ 2 are
assumed to be always real. For the sake of analytical
solutions and better qualitative understandings, we again
take μ2T ¼ JjT ¼ ΔjT ¼ π at the start to illustrate our
idea, so that γAL (γBL), initially prepared from the edge
mode of H1, is precisely γA1 (γB1 ). As demonstrated in
Figs. 3(a)–3(c), this fine tuning of the system parameters is
not needed in the actual implementation.
In step 1, we exploit the adiabatic deformation of

Majorana zero and π modes, denoted 0̂ and π̂, along an
adiabatic path with J2 ¼ Δ2 being real. To develop
insights into this step, we parametrize J1 þ Δ1 ¼ 2π=T,
J1 − Δ1 ¼ 2π sinðϕ1Þ=T, J2 ¼ Δ2 ¼ 2π cosðϕ1Þ=T. As
detailed in the Supplemental Material [40], we find (up
to an arbitrary overall constant)

0̂ ¼ ½cosðϕ1ÞγA1 − sinðϕ1ÞγA3 � þ ½cosðϕ1ÞγB1 − sinðϕ1ÞγB3 �;
π̂ ¼ ½cosðϕ1ÞγA1 − sinðϕ1ÞγA3 � − ½cosðϕ1ÞγB1 − sinðϕ1ÞγB3 �:

By tuning ϕ1 slowly from 0 to π=2, 0̂ will adiabatically
change from ðγA1 þ γB1 Þ to −ðγA3 þ γB3 Þ, whereas π̂ will
adiabatically change from ðγA1 − γB1 Þ to ðγB3 − γA3 Þ; i.e., both
zero modes and π modes are now shifted to the third site.
Because of this adiabatic following, a superposition of 0̂
and π̂ modes remains a superposition, thus preserving the
DTC feature were the adiabatic process stopped at any
time. The net outcome of this step can thus be described
simply as γA1 → −γA3 and γB1 → −γB3 .
Step 2 continues to adiabatically deform 0̂ and π̂.

Starting from J2 ¼ Δ2 ¼ 0 as a result of step 1, we consider
an adiabatic path with J2 ¼ −Δ2 being purely imaginary
values. If we parametrize J1 − Δ1 ¼ 2π=T, J1 þ Δ1 ¼
2π cosðϕ2Þ=T; J2 ¼ −Δ2 ¼ iπ sinðϕ2Þ=T, then one easily
finds [40]

0̂ ¼ ½sinðϕ2ÞγB1 − cosðϕ2ÞγA3 � − ½sinðϕ2ÞγA1 þ cosðϕ2ÞγB3 �;
π̂ ¼ ½sinðϕ2ÞγB1 − cosðϕ2ÞγA3 � þ ½sinðϕ2ÞγA1 þ cosðϕ2ÞγB3 �:

As ϕ2 adiabatically increases from 0 to π=2, 0̂ and π̂
undergo further adiabatic changes to ðγB1 − γA1 Þ and
ðγB1 þ γA1 Þ, respectively. The overall transformation of this
step is −γA3 → γB1 and −γB3 → −γA1 .
In step 3, we exploit further the coherence between

Majorana zero and π modes so as to recover the system’s
original Hamiltonian, while at the same time preventing γAL
and γBL from completely untwisting and returning to their
original configuration. As an innovative adiabatic protocol,
we adiabatically change the system parameters every other
period. This amounts to introducing a characteristic fre-
quency π=T in our adiabatic manipulation, resulting in the
coupling between zero and π quasienergy space. As the
system parameters are adiabatically tuned, Majorana zero
and π modes will then adiabatically follow the degenerate
eigenmodes of U2 (i.e., the two-period propagator) asso-
ciated with zero eigenphase. This leads to a nontrivial
rotation between the two Majorana modes dictated by the
non-Abelian Berry phase in this degenerate subspace. With
this insight, one can envision many possible adiabatic paths
to induce a desirable rotation between Majorana 0 and
π modes.
After some trial and error attempts, we discover a class of

adiabatic paths for step 3 that can yield a rotation of π=4
between γAL and γBL. Specifically, we fix J1 and let
Δ1 ¼ 2πf3;aðtÞ=T, J2 ¼

ffiffiffi
2

p
π exp ðiπ=4Þ½1 − if3;bðtÞ�=T,

and Δ2 ¼
ffiffiffi
2

p
π exp ð−iπ=4Þ½1þ if3;cðtÞ�=T, where f3;lðtÞ,

with l ¼ a, b, c are certain (not necessarily the same)
functions that slowly increase from −1 to 1 for every other
period. That is, for each new period, f3;lðtÞ are alternatively
increased or stay at the values of the previous step. At the
end of the adiabatic manipulation, this step yields the
original Hamiltonian, with γB1 → ðγA1 þ γB1 Þ=

ffiffiffi
2

p
and

−γA1 → ðγB1 − γA1 Þ=
ffiffiffi
2

p
to a high fidelity.

FIG. 3. Time evolution of the Majorana correlation functions
during the manipulation process for two different system param-
eters. Each step takes 200 periods to complete. (a) μ1T ¼ 0,
JT ¼ ΔT ¼ μ2T ¼ π, N ¼ 100. (b) μ1T ¼ 0.3, JT ¼ 3.3,
ΔT ¼ 2.9, μ2T ¼ 3, N ¼ 100. (c) Same as (b) but in the presence
of on site, hopping, and pairing disorders, as well as small
hopping term in H2, averaged over 100 disorder realizations.
(d) Instantaneous eigenphases (denoted ε2) of U2 during steps
1–3, with ε2 ¼ 0 well separated from the bulk spectrum. Blue,
green, and brown vertical dotted lines mark the end of step 1, 2,
and 3, respectively.

PHYSICAL REVIEW LETTERS 120, 230405 (2018)

230405-3



Finally, in step 4, we repeat the three steps outlined above
to obtain the overall transformations γAL → γBL and
γBL → −γAL, which completes the simulated braiding oper-
ation to the two different species of Majorana modes and at
the same time resets the system configuration. As shown in
Fig. 2, at the start of the protocol, γAL (γBL) at our MTC
appears at even (odd) multiples of T; by contrast, at the end
of the protocol, γAL (γ

B
L) appears at odd (even) multiples of T.

To confirm the above analysis, we calculate the evolution
of Majorana correlation functions during the manipulation
process. The system is assumed to be in the even parity
state such that initially hiγALγARi ¼ hiγBLγBRi ¼ 1 and
hiγALγBRi ¼ hiγBLγARi ¼ 0, where γαi ≡ γαi ðt ¼ 0Þ, α ¼ A, B,
and i ¼ L, R. During the manipulation process, γLAðtÞ and
γLBðtÞ in general become a superposition of γAL and γBL, thus
changing the correlations hiγαLðtÞγβRi, where α, β ¼ A, B.
The success of our protocol is then marked by the final
correlation functions hiγALðtfÞγARi ¼ hiγBLðtfÞγBRi ¼ 0 and
hiγALðtfÞγBRi ¼ −hiγBLðtfÞγARi ¼ 1. In experiment, Majorana
correlation functions hiγALγARi and hiγBLγBRimay be measured
via a time-of-flight imaging method, as proposed in
Ref. [53], or indirectly by measuring the parity of the wire
[54] at even and odd integer multiples of T. To measure
cross-correlation functions such as hiγBLγARi, one could first
turn off the periodic driving on the right half of the wire
after the protocol is completed, then wait for one period.
Since γAR is a Majorana zero mode in the absence of periodic
driving by construction, it will stay invariant in one period,
whereas the left Majorana mode will transform into γBL [55].
The same read-out process can then be carried out to
measure their correlation functions.
The full evolution of Majorana correlation functions is

depicted in Figs. 3(a)–3(c) under different system param-
eter values. In particular, Fig. 3(c) assumes also the
presence of disorders and a small hopping term in H2,
which may arise due to the presence of the Raman lasers,
even after taking low frequency and large detuning values.
More precisely, hopping, pairing, and on site static dis-
orders are considered by taking Jj ¼ J þ δJj, Δj ¼ Δþ
δΔj, μ1 → μ1 þ δμ1;j, and μ2 → μ2 þ δμ2;j, where δJjT,
δΔjT, δμ1;jT, and δμ2;jT uniformly take random values
between −0.1 and 0.1, while the small hopping term is of
the form −

P
jðJ þ δJ jÞc†jþ1cj þ H:c:, where J T ¼

0.025 and δJ jT ∈ ½−0.01; 0.01�. The fact that
Figs. 3(a)–3(c) look qualitatively the same demonstrates
the robustness of our protocol against such system imper-
fections. Finally, plotted in Fig. 3(d) is the whole eigen-
phase spectrum of U2, which indicates that its zero
eigenphases are well separated from the rest of the
spectrum, thus confirming the topological protection
needed to realize the rotation between γAL and γBL.
Discussion.—Because of fermion parity conservation, a

minimum of four Majorana modes is required to harness

their non-Abelian features for nontrivial (single-qubit) gate
operations. This Letter demonstrates, through exploiting
the time-domain features, that this can be achieved in a
minimal single wire setup, thus avoiding the necessity to
design complicated geometries [30,31,33,34]. Moreover, as
demonstrated in the Supplemental Material [40], our setup
can be readily extended to an array of wires to simulate
more intricate braiding between various pairs of Majorana
modes at different times and wires. In view of these two
aspects, it is expected that certain quantum computational
tasks may now be carried out using significantly less
number of wires.
Asanother featureof theproposedprotocol, theendof step

3 has achieved the transformation γAL → ð1= ffiffiffi
2

p ÞðγAL þ γBLÞ
and γBL → ð1= ffiffiffi

2
p ÞðγBL − γBLÞ, which can be written as

V ¼ exp ½−ðπ=8ÞγALγBL�. In the even parity subspace, a qubit
can be encoded in the common eigenstates of the parity
operators iγALγ

A
R and iγ

B
Lγ

B
R, such that iγ

A
Lγ

A
Rj0i ¼ iγBLγ

B
Rj0i ¼

j0i and iγALγ
A
Rj1i ¼ iγBLγ

B
Rij1i ¼ −j1i. It can be easily

verified that V maps j0i to a magic state cosðπ=8Þj0i−
sinðπ=8Þj1i. It is known that a combination of Clifford gates
and a magic state is required to achieve universal quantum
computation[35,36].WhileCliffordgatescanberealized ina
typical Ising anyonic model alone, the creation of a magic
state normally requires an additional dynamical process
[37–39]. The rather straightforward realization of the oper-
ation V here is hence remarkable.
It is also important to ask to what extent the gate

operations here share the robustness of the braiding of
two Majorana modes. On the one hand, if J2, Δ1, and Δ2 in
step 3 take arbitrary time dependence then the desired
braiding outcome cannot be achieved. On the other hand, to
physically implement a braiding operation without the use
of direct spatial interchange between two Majorana modes,
we expect some necessary control to restrict the time
dependence of J2, Δ1, and Δ2 used in step 3 to a certain
degree. Our further investigations [40] indicate that our
protocol does enjoy some weak topological protection, in
the sense that its fidelity is rather stable under considerable
time-dependent deformation: J2 → J2 þ δJ2, Δ1 → Δ1þ
δΔ1, and Δ2 → Δ2 þ δΔ2 in step 3, where δJ2, δΔ1, and
δΔ2 represent time-dependent perturbations, vanishing at
the start and end of step 3, with relative strength on the
order of 5% [40].
Conclusion.—A coherent superposition of Majorana

zero and π modes of a periodically driven 1D super-
conducting wire is shown to yield period-doubling MTCs.
By adiabatic manipulation of the Majorana zero and π
modes, we have proposed a relatively robust scheme to
mimic the braiding of two Majorana modes localized at
different physical and time lattice sites. Our approach is
promising for physical resource saving. As an important
side result, we also obtain a magic state crucial for universal
quantum computation [35,36].
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