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We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of
quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared
by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the
freely expanding cloud, which is related to the average total angular momentum of the initial state, offers
direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for
ν ¼ 1=2 and 1=3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to
quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.
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Introduction.—The usual exchange statistics, which
classifies particles into bosons and fermions, is enriched
in two dimensions (2D). In 2D, the many-particle wave
function can, in principle, acquire an arbitrary statistical
phase factor expðiϕstÞ upon particle exchange, which can
be different from the usual �1 factor defining bosons and
fermions [1,2]. Particles having this unusual fractional
exchange statistics are called anyons [3]. In the presence
of topologically degenerate ground states, the phase factor
when anyons are braided around each other can even be
replaced by non-Abelian transformations acting on the
ground state manifold [4], with interesting potential appli-
cations in topological quantum computing [5].
Among the 2D systems where anyons appear naturally,

fractional quantum Hall (FQH) systems are, perhaps,
the most commonly studied ones [3,6,7]. Quasihole and
quasiparticle excitations of an FQH system are known to
exhibit anyonic character [8]. Although the FQH effect was
originally observed in 2D electron gases under a magnetic
field [9], analogue systems where interacting neutral
particles experience synthetic magnetic fields [10,11] are
emerging as promising platforms for studying FQH phys-
ics. Ultracold atomic [12] and photonic systems [13], being
prime examples of such analogue systems, are advanta-
geous over the electronic ones in that they offer a highly
controllable environment. In these systems, it might be
possible to pin and braid anyons using localized potentials
for particles [14–17].
While the fractional charge of (Abelian) anyons in FQH

systems has been experimentally observed via shot-noise
measurements [18], no clear-cut evidence of the exchange
statistics is yet available. Although interferometric mea-
surements performed, so far, in electronic systems are
highly suggestive of anyonic statistics [19], they still lack a
unique interpretation [20]. More recent studies on the
interferometry of Abelian anyons include a more detailed

modeling of the usual Fabry-Pérot setups, which accounts
for competing effects [21] and the proposition of Hanbury
Brown–Twiss interferometry to probe anyon correlations
[22]. Building on earlier proposals [23], experiments
pointing at non-Abelian properties were also performed
[24]. Interferometric schemes for detecting the statistical
phase were also developed for ultracold atomic [14] and
photonic [17] systems. Recently, as a slightly different
approach, proposals for detecting Haldane’s fractional
exclusion statistics [25], which is intimately connected
to the braiding statistics, have appeared in the solid state
[26], ultracold atomic [27], and photonic contexts [28].
In this Letter, we propose a much simpler time-of-flight

(TOF) measurement [12] as a way to observe the statistical
phase of an FQH liquid of ultracold atoms initially prepared
in a quasihole state with Abelian braiding statistics. The
suggested experimental procedure involves creating and
pinning the quasiholes with localized potentials and sud-
denly releasing the atomic cloud to measure the density
distribution after time of flight for one- and two-quasihole
states. As the average total angular momentum of the initial
state can be mathematically related both to the TOF mean
square radius [29] and to the Berry phase [8,30] associated
with quasihole braiding, a measurement of the former
provides information on the latter quantity. As a key
advantage over previous interferometric proposals [14,17],
ours does not require physically moving quasiholes and is
based on a standard TOF measurement on a static system.
Different, yet related aspects of the anyonic character

of quasiholes have been addressed in recent works: the
fractionalization of angular momentum has been discussed
in [31] for test particles immersed in an ultracold atomic
FQH system and, very recently, in [32] for impurities
interacting with a bosonic bath. Signatures of anyonic
statistics in the correlation functions of an expanding gas of
anyons have been suggested in [33].

PHYSICAL REVIEW LETTERS 120, 230403 (2018)

0031-9007=18=120(23)=230403(7) 230403-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.230403&domain=pdf&date_stamp=2018-06-06
https://doi.org/10.1103/PhysRevLett.120.230403
https://doi.org/10.1103/PhysRevLett.120.230403
https://doi.org/10.1103/PhysRevLett.120.230403
https://doi.org/10.1103/PhysRevLett.120.230403


Model System.—We consider a generic FQH system with
interacting neutral particles in a synthetic magnetic field B,
which is uniform and perpendicular to the 2D plane of
motion. Such a system, with N particles of massM, can be
described by the Hamiltonian

HFQH ¼
XN
i¼1

ð−iℏ∇i −AÞ2
2M

þ gint
X
i<j

δð2Þðri − rjÞ; ð1Þ

where AðrÞ ¼ Bẑ × r=2 is the synthetically created sym-
metric gauge vector potential. The strength of repulsive
contact interactions is given by gint > 0.
The eigenstates of the noninteracting Hamiltonian are

the Landau levels separated by the cyclotron energy ΔE ¼
ℏB=M. When the typical interaction energy gint=l2B, with
lB ¼ ffiffiffiffiffiffiffiffiffi

ℏ=B
p

the magnetic length, is sufficiently smaller
than ΔE, it is reasonable to make the approximation that
only the lowest Landau level (LLL) is occupied. The wave
function of a single-particle eigenstate in the LLL with
angular momentum nℏ is ψnðζÞ ¼ ζne−jζj2=4=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π2nn!
p

lBÞ,
where ζ ¼ ðxþ iyÞ=lB is the complex-valued coordinate
of the particle.
For the many-particle system, one can define the filling

fraction ν ¼ N=NΦ as the ratio between the number of
particles N and the number of magnetic flux quanta NΦ,
which corresponds to the filling of the Landau levels in
the noninteracting case. For a fractional filling ν ¼ 1=m,
the exact nondegenerate ground state of the interacting
Hamiltonian HFQH at a total angular momentum Lz ¼
mNðN − 1Þℏ=2 is described by the Laughlin wave function
[6,14,34]

ΨFQHðζ1;…; ζNÞ ∝
Y
j<k

ðζj − ζkÞme−
P

N
i¼1

jζij2=4; ð2Þ

where ζi is the complex-valued coordinate of the ith
particle. For bosons (fermions) m must be even (odd)
for the symmetry of the wave function to be correct. In what
follows, we will focus on the two exemplary cases with
m ¼ 2 and 3. The m ¼ 3 wave function is the ansatz
proposed by Laughlin to describe the FQH effect for
electrons at filling ν ¼ 1=3 [6]. The m ¼ 2 bosonic wave
function appeared, instead, in the context of rotating
ultracold atoms [14,34,35] and was theoretically found
to be the absolute ground state in the presence of a uniform
synthetic magnetic field and a weak trapping potential
[28,36]. In a similar setup with fermionic atoms, the ground
state will be the m ¼ 3 Laughlin state.
The Laughlin wave function (2) has zero-energy exci-

tations known as quasiholes which obey anyonic exchange
statistics in the thermodynamic limit [7,8]. When two
quasiholes are exchanged, the many-body wave function
acquires the phase ϕst ¼ νπ. Numerical studies show that
quasiholes (qh) can be pinned by repulsive piercing

potentials created with lasers in ultracold atomic systems
[14,15]. Such a potential term can be represented by a sum

of delta potentials as Vqh ¼ V0

PNqh

i¼1

P
N
j¼1 δ

ð2Þðrj −RiÞ,
whereNqh is the total number of repulsive potentials andRi

is the position of the ith localized potential with
strength V0.
According to exact diagonalization of small systems

[37], the ground state of the total Hamiltonian Hqh ¼
HFQH þ Vqh þ V trap including suitable pinning and trap-
ping [28,36] potentials is not affected by the details of
the potentials and is well represented by the following one-
and two-quasihole wave functions for Nqh ¼ 1 and 2,
respectively,

Ψ1qhðfζig;R1Þ∝
YN
i¼1

ðζi−R1ÞΨFQHðζ1;…;ζNÞ; ð3Þ

Ψ2qhðfζig;fRjgÞ∝
YN
i¼1

Y2
j¼1

ðζi−RjÞΨFQHðζ1;…;ζNÞ; ð4Þ

where R1;2 are the complex positions of the quasiholes
determined by the positionsR1;2 of the localized potentials.
From the experimental perspective, once the ultracold
atomic cloud is prepared in the Laughlin ground state,
which is assumed to be sufficiently separated from both the
gapped bulk excitations and low-lying edge excitations so
that thermal fluctuations do not spoil it, one can adiabati-
cally prepare the quasihole states by slowly increasing the
strength V0 of the repulsive potentials and then slowly
moving them to the desired position in space [14].
Alternatively, one may also consider directly cooling down
the gas in the presence of the potentials.
Braiding phase and total angular momentum.—In our

system with quasiholes, the braiding phase corresponds to
the difference between the Berry phases the many-body
wave function acquires after a quasihole is moved along a
closed path with or without another quasihole enclosed by
the path [7,8]. Provided the quasiholes remain sufficiently
far apart from each other, the braiding phase does not
depend on the details of the path; therefore, we can consider
a circular path of radius R, cyclically parametrized by the
angular coordinate θ. We further assume that the second
quasihole (if present) is pinned at the origin. The Berry
phase [30], in this case, becomes

φBðRÞ ¼ i
I
R
hΨðθÞj∂θjΨðθÞidθ; ð5Þ

where jΨðθÞi refers to the one- or two-quasihole
states (3)–(4).
We now relate the Berry phase (5) to the expected

value of total angular momentum hLzi, by first writing the
action of the partial derivative ∂θ on the state jΨðθÞi as
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∂θjΨðθÞi ¼ limδθ→0f½jΨðθ þ δθÞi − jΨðθÞi�=δθg. Since
rotating the quasihole by δθ is equivalent to rotating the
whole many-body system by the same angle (modulo a 2π-
periodic phase factor, linearly dependent on δθ), the state
jΨðθ þ δθÞi can be represented using the rotation generator
Lz as jΨðθ þ δθÞi ¼ expð−iLzδθ=ℏÞjΨðθÞi. Expanding
the rotation operator for small δθ as expð−iLzδθ=ℏÞ≃
1 − iLzδθ=ℏ, we see that ∂θjΨðθÞi ¼ −ðiLz=ℏÞjΨðθÞi,
which implies

φBðRÞ ¼
1

ℏ

I
R
hΨðθÞjLzjΨðθÞidθ ¼ 2π

ℏ
hLzi; ð6Þ

where the expectation value of hLzi is taken with respect
to a wave function having a quasihole with fixed radial
coordinate R but an arbitrary angular coordinate. This
remarkable expression relates a quantity resulting from an
adiabatic motion, that is, braiding, to a stationary property
of a quantum mechanical state, that is, the average total
angular momentum [40].
Equation (6) also provides an experimental route for

measuring the braiding (br) phase given by the Berry phase
differences ϕbrðRÞ ¼ φ2qh

B ðRÞ − φ1qh
B ðRÞ yielding

ϕbrðRÞ ¼
2π

ℏ

�
hLzi2qh − hLzi1qh

�
; ð7Þ

where the superscripts 1qh and 2qh refer to one- and two-
quasihole states, respectively. Equation (7) shows that the
braiding phase can simply be determined by measuring the
average total angular momentum for two quantum states
and taking the difference, without any need to actually
braid quasiholes. The fact that the braiding phase is defined
in Eq. (7) only up to an integral multiple of 2π does not
preclude highlighting the fractional statistics.
As an alternative to the braiding phase, one may choose

to directly measure the statistical (st) phase ϕstðRÞ ¼
ϕbrðRÞ=2 involving the adiabatic exchange of two quasi-
holes [15,17]. In our proposal, this would correspond to
measuring the angular momentum in the two cases of
(a) two quasiholes pinned at diametrically opposite posi-
tions each at a distance R=2 from the origin and (b) a single
quasihole pinned at a radius R=2. In particular, one can
write

ϕstðRÞ ¼
π

ℏ

�
hLzi2qhop − 2hLzi1qh

�
þ πm

NðN − 1Þ
2

; ð8Þ

where hLzi2qhop is the average total angular momentum of the
two-quasihole state with diametrically opposite (op) quasi-
holes and the last term compensates the phase factor picked
up by the quasihole wave functions after a π rotation [41].
Although we will evaluate the statistical phase only for
the case of oppositely located quasiholes, Eq. (8) can be
generalized to configurations in which quasiholes are

pinned at generic positions. However, such a generalization
requires three different measurements of hLzi, instead of
two [41].
Time-of-flight measurement.—The average total angular

momentum of a cloud of cold atoms occupying the LLL
can be determined by just measuring the mean square
radius hr2i of the density distribution of atoms in the trap
or, even easier, after a time-of-flight expansion for a
duration t once the pinning and trapping potentials and
synthetic fields are suddenly turned off [29,42]

hr2iTOF ¼
1

N

�
ℏtffiffiffi
2

p
MlB

�
2
�hLzi

ℏ
þ N

�
¼

�
ℏt

2Ml2B

�
2

hr2i:

ð9Þ

Note that for this self-similar TOF expansion to be valid,
the interactions between particles should be negligible
during the expansion, but the initial state can well be a
highly correlated one. This omission of interaction effects
can be justified, for instance, whenever the system can be
described within the LLL approximation [46].
Combining Eq. (7) with the relation displayed in Eq. (9)

between the in-trap average total angular momentum hLzi
and hr2iTOF, we obtain the fundamental experimental
observable yielding the braiding phase

ϕbrðRÞ ≃ 2πN

� ffiffiffi
2

p
MlB
ℏt

�
2
�
hr2i2qhTOF − hr2i1qhTOF

�
; ð10Þ

which is, again, defined up to an integral multiple of 2π.
Similarly, the corresponding observable for ϕstðRÞ can be
found by using Eqs. (8) and (9).
Numerical Results.—In this section, we substantiate our

conclusions by presenting estimates for ϕbrðRÞ calculating
the in-trap mean square radius hr2i, related to hr2iTOF
through Eq. (9). Our numerical calculations are based on
the analytical wave functions (3)–(4) and we use a
Monte Carlo (MC) technique [47] to compute hr2i and
the density profile [48]. As a further check, we performed
exact diagonalization calculations for smaller N so as to
benchmark the MC results and verify that the ground state
wave functions for suitable pinning and trapping potentials
match the analytical wave functions [37].
We consider two configurations of two-quasihole states,

where the distance between two quasiholes is denoted
by R ¼ jR1 −R2j in each case. In Fig. 1, one of the
quasiholes is located at the center, so we calculate
ϕbrðRÞ ¼ 2πNðhr2i2qh − hr2i1qhÞ=ð ffiffiffi

2
p

lBÞ2 determined by
Eqs. (7) and (9). In Fig. 2, two quasiholes are located
at diametrically opposite positions, so the relevant quantity
is ϕstðRÞ ¼ πNðhr2i2qhop − 2hr2i1qhÞ=ð ffiffiffi

2
p

lBÞ2 þ πN þ
πmNðN − 1Þ=2 from Eqs. (8) and (9).
In the calculations for N ¼ 20-particle systems shown in

Fig. 1(a), a clear plateau is seen for ν ¼ 1=2 at the expected
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fractional value ϕbr=2π ¼ 1=2, accompanied by small
bumps at its ends. These bumps are more pronounced in
the ν ¼ 1=3 case, where the plateau is not fully visible, and
can be related to perturbations in the FQH cloud density.
On one hand, at small R [filled circles in Fig. 1(a)], the

phase behavior reflects the density deformation induced by
the quasihole in the origin shown in Figs. 1(b) and 1(e).
Such a deformation is not sensitive to the cloud size that
increases with N and directly reflects the size of the
quasihole. Especially for ν ¼ 1=3 the bump in ϕbrðRÞ
precisely matches the position of the peak in the density
profile [52–54]. On the other hand, the bump visible
at large R [filled squares in Fig. 1(a)] is related to the
density increase in the vicinity of the cloud edge [Figs. 1(d)
and 1(g)]. The scaling of the bump position with N and that
of the bump visibility with ν confirm the behavior of the
density maximum: the former scales as

ffiffiffiffi
N

p
, while the latter

increases with decreasing ν.
While smaller clouds give qualitatively similar results

albeit with quantitatively more pronounced deviations,
these calculations prove that, for ν ¼ 1=2, an N ¼ 20-
particle system is already big enough to properly measure
the anyonic statistics of quasiholes. On the other hand, for
ν ¼ 1=3, the bigger effective size of quasiholes requires
larger systems to clearly observe the plateau in the braiding
phase. Since larger particle numbers typically require a
higher relative precision in measuring the angular momen-
tum, a useful alternative option is to consider the second
configuration with quasiholes at diametrically opposite
positions [15,17]: such a configuration allows us to
maximize the quasihole distance by exploiting the full
extension of the bulk region. In this way, it is possible to
obtain a clear plateau in the statistical phase also for ν ¼
1=3 and N ¼ 20 particles, as displayed in Fig. 2(a).

(a) (b) (c) (d)

(e) (f) (g)

FIG. 1. (a) Quasihole braiding phase ϕbr as a function of the distance R ¼ jR1 −R2j between two quasiholes for systems of N ¼ 20
particles at filling ν ¼ 1=2 (blue diamonds) and ν ¼ 1=3 (red circles), where one of the quasiholes is fixed in the origin (jR2j ¼ 0). Error
bars represent statistical uncertainties on the data. Density profiles characterizing some two-quasihole states are given for ν ¼ 1=2 in
(b)–(d) and for ν ¼ 1=3 in (e)–(g). The position of the outer quasihole is fixed along the x axis at x1=

ffiffiffi
2

p
lB ¼ 1, 3, 5 in (b)–(d) and at

x1=
ffiffiffi
2

p
lB ¼ 1, 4, 6 in (e)–(g).

(a)

(b) (c)

FIG. 2. (a) Statistical phase ϕst as a function of the distance
R ¼ jR1 −R2j between two quasiholes for systems of N ¼ 20
particles at filling ν ¼ 1=2 (blue diamonds) and ν ¼ 1=3 (red
circles), where the quasiholes are located at diametrically
opposite positions (x1 ¼ −x2 ¼ R=2). Error bars are smaller
than the symbol size. (b) Density profile for ν ¼ 1=2 with
quasiholes located along the x axis at x1 ¼ −x2 ¼ 2.5

ffiffiffi
2

p
lB.

(c) Density profile for ν ¼ 1=3 with quasiholes located along the
x axis at x1 ¼ −x2 ¼ 3

ffiffiffi
2

p
lB.
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Conclusion.—In this Letter, we argued that a standard
measurement of the static density profile in the trap or after
time of flight is sufficient to observe the anyonic statistics
of quasiholes in a gas of ultracold atoms in the FQH
regime. We showed that the mean square radius of the cloud
in the presence of one or two quasiholes is directly related
to the braiding and statistical phases. Numerical calcula-
tions of the braiding phase ϕbr as a function of the distance
between quasiholes for a reasonable number of particles
(N ¼ 20) clearly display a plateau region, for which the
quasiholes are sufficiently far away from each other and
from the edge of the cloud. Except for small finite-size
deviations, the value of the plateau is very close to the
expected one ϕst ¼ ϕbr=2 ¼ νπ, giving a clear signature of
the quasihole anyonic statistics.
A possible extension of our protocol to the case of non-

Abelian anyons is also the subject of ongoing studies. The
key difference is that the Berry phase is replaced by its
Wilczek-Zee generalization [5], which depends on a matrix
of inner products of the form hΨαðθÞj∂θjΨβðθÞi. Indices α
and β label the degenerate quasihole ground states peculiar
to non-Abelian phases. In order to generalize our scheme,
we will first need to verify the identification of ∂θjΨαðθÞi
with LzjΨαðθÞi and then to connect the angular momentum
matrix elements hΨαðθÞjLzjΨβðθÞi with certain real-space
observables like hr2i considered in the current Letter. Such
a real-space approach might be appealing, particularly in
view of the possibility of using a generalized plasma
analogy [55]. From the perspective of reproducing our
proposal in the non-Abelian context, it looks promising to
consider the px þ ipy model of topological superconduc-
tors [5], as the Moore-Read state [56], representing the
simplest FQH state with non-Abelian statistics, can be
described through the p-wave pairing of composite
fermions [57].
Further work will extend these results to FQH liquids

of photons in cylindrical set-ups such as the twisted
resonators of [58], for which the far-field intensity profile
of the light emission provides the optical analog of time-
of-flight imaging of ultracold atomic clouds. A first task
will be to identify suitable schemes to generate stable
quasiholes states, e.g., by generalizing the frequency-
dependent incoherent pumping scheme of [28] in the
presence of pinning potentials piercing the cavity. We
then expect that the braiding phase of quasiholes can
again be extracted from the expectation value of the
angular momentum.
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