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The knowledge of the coordination environment around various atomic species in many functional
materials provides a key for explaining their properties and working mechanisms. Many structural motifs
and their transformations are difficult to detect and quantify in the process of work (operando conditions),
due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions.
Here we use an artificial neural network approach to extract the information on the local structure and its
in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by
extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron
across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron
coordination and material density, and to observe the transition from a body-centered to a face-centered
cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental
conditions.
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Local deviations of atomic positions from periodic lattice
sites often result in unique structural motifs and function-
alities in both bulk [1–4] and nanomaterials [5–7]. Local
atomic displacements are also crucial in many processes,
such as chemical reactions and phase transitions, and are
often a key for explaining the properties and working
mechanisms in functional materials [2,8–14]. If correlation
lengths for local distortions are shorter than the size of the
coherent scattering region, these processes are difficult to
observe by methods sensitive to long-range order [4,6].
Additional challenges for detection and interpretation of
structural transformations arise because they are often
associated with low concentration or low dimensionality
of the material, as well as high temperature or high
pressure. In many cases the actual atomic displacements
are also quite subtle, not exceeding 0.1–0.2 Å.
Extended x-ray absorption fine structure (EXAFS)

spectroscopy has excellent sensitivity to local atomic
displacements (with accuracy 0.01 Å and better), elemental
specificity, and sensitivity to vibrational dynamics [15,16].
EXAFS can be acquired in a broad range of experimental
conditions; thus, this technique is well suited for in situ
studies of structural transformations [8,9,13,14,17–22].
New approaches are sought for extending the use of
EXAFS beyond its most common application: analysis
of the first few coordination shells and moderately ordered
materials [23].
The ability to recognize patterns and correlations in large

data sets provided by recent progress in machine learning
(ML) [24–26] offers new opportunities for extracting

“hidden” information on local structure from experimental
data. We have recently demonstrated that ML allows
extraction of structure descriptors in nanoparticles from
their x-ray absorption near edge structure (XANES) [27].
Here we develop an approach for the interpretation of
structural transitions and disorder effects in EXAFS data, to
which sensitivity of XANES is limited. As we show in this
Letter, ML enables direct interpretation of EXAFS features
in bulk and nanostructured materials in terms of atomistic
radial distribution function (RDF) without assuming a
particular disorder model. Furthermore, it allows RDF
extraction in the longer range of interatomic distances,
compared to conventional analysis.
We illustrate our method on the example of bulk iron

undergoing temperature-induced phase transition. At tem-
perature ∼1190 K the body-centered cubic structure (bcc)
of iron α phase (ferrite) changes to a face-centered cubic
structure (fcc) of γ phase (austenite) [28]. This phase
transformation is an integral part of many technological
processes [10,29,30], but its mechanism is far from being
understood due to the experimental challenges in accurate
characterization of the local structure changes [29,31,32].
While a few high-pressure studies of iron appeared recently
[13,14,20–22], no EXAFS studies of high-temperature
bcc-to-fcc phase transition were reported, which can be
attributed both to the difficulties of experimental measure-
ments at such high temperature, and the corresponding
challenges in EXAFS analysis. The latter problem is
universal: at high temperatures EXAFS amplitude is
reduced significantly by enhanced disorder effects, while
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anharmonicity of atomic thermal motion results in com-
plex, asymmetric bond lengths distributions that are diffi-
cult to account for [23]. These challenges are common for
many structural transformations. As we will demonstrate,
the ML-based approach allows reliable extraction of the
structural information on the short- and medium-range
order at temperatures as high as 1300 K.
RDF gðRÞ is a key descriptor of local structure. Following

changes in RDF one can detect and characterize the phase
transitions [33–35], alloying [36,37], structural motifs, and
their transformations in nanoparticles [38,39]. EXAFS χðkÞ
(here k is the photoelectron wave number) can be expanded
as χðkÞ ¼ P

pχ
pðkÞ, where summation includes single-

scattering and multiple-scattering (MS) contributions. For
single scattering [15]

χpðkÞ ¼
Z þ∞

0

S20Apðk; RÞgpðRÞ sin½2kRþ ϕpðk; RÞ�
dR
R2

;

ð1Þ

where S20Ap and ϕp are the scattering amplitude and phase
functions and gpðRÞ is partial RDF, corresponding to a
specific coordination shell. Equation (1) can be generalized
to include MS contributions by replacing gpðRÞ with
corresponding many-atomic distribution functions [40].
Reconstruction of RDF from EXAFS spectra is an ill-

posed problem, and relies on additional constraints and
assumptions, such as (i) the shape of RDF peaks in
conventional fitting approaches [41–43], (ii) the knowledge
of the initial structure model and density of material in
reverse Monte Carlo (RMC) simulations [44–46], and
(iii) the non-negativity and smoothness of the RDF in
regularizationlike techniques [43,47,48]. The constraints
that work well for one material do not necessarily perform
well for another, even less so for the transitional region
between different phases. The development of constraints
and fitting models is often subjective. An alternative is to
rely for this purpose on a data-driven ML, where the
parameters are optimized during the training stage, so that
the routine gives accurate results for a broad range of
relevant systems.
For extraction of RDF from EXAFS we use an artificial

neural network (NN) [26,27]. The nonlinear sensitivity of
NN to input features is the reason behind its unique ability
to detect subtle fingerprints of local structure. NN is a
composite function represented as a network of nodes,
where the ith node in the nth NN layer performs a nonlinear
operation on all inputs x½n−1�ðjÞ, weighted with parameters
θ½n�ði;jÞ, and produces a single output x½n�ðiÞ. By optimizing
θ½n�ði;jÞ, a sufficiently large NN can be trained to reproduce
reliably the relationship between inputs and outputs. In our
approach, illustrated in Fig. 1, an EXAFS spectrum is used
to set the node values in the NN input layer [Fig. 1(a)].
Here, instead of discretizing EXAFS in k space, or Fourier

transforming it to frequency (R) space [Fig. 1(c)], we
employ wavelet transformation (WT) [Fig. 1(b)] [49,50],
which represents EXAFS spectrum in k and R spaces
simultaneously. Only the WT points that are sensitive to
structure changes are used: this region in k and R space is
shown in Fig. 1(b), and is obtained automatically based
on the analysis of variations in the training spectra. The
wavelet-transformed spectra are then processed by the
nodes in the NN further layers [Fig. 1(d)]. The output
layer of the NN produces a vector, which encodes the entire
RDF [Fig. 1(e)], approximated with a histogram in a given
R range between Rmin and Rmax: each NN output node
yields the height of a particular histogram bin.
The crucial part of NN analysis is the training process.

Here, we supply as input to the NN a set of EXAFS spectra
χt, for which the corresponding RDFs gtðRÞ are known.
This true gtðRÞ is compared with the NN output g̃tðRÞ, and
the NN weights θ½n�ði;jÞ are updated, so that the difference
between g̃tðRÞ and gtðRÞ is minimized for all training
spectra. It is not feasible to construct such a training set
based on experimental measurements. Note also that to
have a reliable, unbiased NN, the training set should
represent a large portion of configurational space, not
limited to a relatively small number of experimentally
available structures. To solve this problem we use classical
molecular dynamics (MD) to create ∼3000 training exam-
ples, corresponding to different phases of iron and different
degrees of disorder. Knowing the atomic trajectories in
MD simulations, we calculate the corresponding RDFs, as
well as the corresponding time- and ensemble-averaged
EXAFS (MD-EXAFS). As we have demonstrated before
[46,51–53], MD allows one to generate EXAFS spectra
in a qualitative agreement with experimental data. A very
accurate agreement betweenMD-EXAFS and experimental
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FIG. 1. Fe K-edge EXAFS for bcc iron (a). Modulus of its
Morlet WT is shown in (b), while the modulus of Fourier
transform (FT) is shown in (c). The dashed line in (b) indicates
the region in k and R space, established as the most sensitive to
structure variations. WT data are processed by NN (d), to map
features in wavelet-transformed spectra to the features in RDF,
approximated with a histogram (e).
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EXAFS is not required here, since MD-EXAFS data are
used solely for the purpose of establishing the relation
between EXAFS and RDF features, and not for direct
matching with experimental data [52]. For MD we used
Sutton-Chen type potential [54]. To calculate MD-EXAFS
spectra (Fig. 2) we used the same procedure as in
Refs. [46,52]. MD simulations were carried out for iron
with bcc, fcc, and hexagonal close-packed (hcp) structures
in the temperature range from 10 up to 1500 K. Figure 2
compares the calculated MD-EXAFS with the experimen-
tal data for bcc iron at room temperature [Fig. 2(a)] and fcc
iron at 1273 K [Fig. 2(b)]. MD describes reasonably the
experimental room temperature EXAFS, and gives quali-
tative agreement with the high temperature data. In the
latter case the disorder in the first coordination shell is
underestimated in simulations, as evidenced by the higher
main FT peak. The temperature-dependent MD-EXAFS
spectra are shown in the insets and were used for NN
training, and also for validation of its accuracy [see
Supplemental Material (Figs. S1 and S2)] [55].
The experimental Fe K-edge EXAFS, reported in Fig. 2,

were recorded in situ in transmission mode at the
ELETTRA synchrotron [66]. A 40% detuned Si (111)
double-crystal monochromator was used. The intensities of
the incident and transmitted x-ray beams were measured by
two ionization chambers filled with argon and krypton
gases. High purity iron foil (Goodfellow, 99.99+%) with
the thickness of 4 μm was used as a sample. The sample
temperature was controlled in the range from 300 to 1273 K
using the L’Aquila-Camerino vacuum glass furnace [67].
To avoid any contact with the graphite foil heater of the

furnace (the graphite was necessary for transmission x-ray
experiment) and to prevent the sample from oxidation and
carbidization that plague most high temperature experi-
ments with pure iron, the sample was gently packed
between two BN pellets. Note that BN is thermally stable
up to ∼3200 K [68], but reacts with iron at ∼1400 K [69].
Temperature dependencies of the obtained experimental

spectra are shown in Fig. 3. The good signal-to-noise ratio
is observed in the k-space data [Fig. 3(a)] even at the
highest temperature. The lack of features at low R values
(around ∼1 Å) in Fourier-transformed data [Fig. 3(b)]
together with the stability of all XANES features
(Supplemental Material, Fig. S3) give us confidence that
the metallic state of iron is preserved in our measurements.
An indirect indication of the transition from a bcc to a fcc

structure [see the inset in Fig. 3(b)] is the change in the
features at low k values, marked in Fig. 3(a). These features
cannot be included in EXAFS analysis due to the artifacts
of background subtraction and inaccuracies of EXAFS
theory in this region. The changes in features at higher k
values (k > 3 Å) and in R space are subtler and masked by
the temperature effect. In particular, both bcc and fcc
structures yield a single nearest neighbor peak to the
R-space spectrum between ca 1.5 and 3 Å, Fig. 3(b). It
is known, however, that these two structures have different
nearest neighbor RDFs: in the ideal bcc structure with
lattice constant a0 each atom is surrounded by 8 atoms at
the distance a0

ffiffiffi
3

p
=2, and 6 atoms at the distance a0. In the

ideal fcc structure all atoms are surrounded by 12 nearest
neighbors at the same distance a0=

ffiffiffi
2

p
. The corresponding

pairs of atoms are shown in the inset of Fig. 3(b).
In Fig. 4 we apply NN, trained on MD-EXAFS spectra,

to the analysis of experimental data. RDFs, reconstructed
by NN from experimental Fe K-edge EXAFS in bulk iron
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FIG. 2. Fourier-transformed experimental and simulated (with
MD and RMC methods) Fe K-edge EXAFS for bulk iron at 300
and 1273 K temperatures. Contribution of MS paths to the total
MD-EXAFS is shown separately. Spectra corresponding to
1273 K are shifted vertically and multiplied by 5. Insets show
the temperature dependencies of MD-EXAFS for bcc and fcc
structures (only the main FT-EXAFS peak).
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FIG. 3. Experimental Fe K-edge EXAFS in k space (a) and R
space (b) for temperatures between 300 and 1273 K. Arrows in
(a) indicate the features in the low k range, whose change implies
the phase transition from the bcc to fcc structure [inset in (b)].
Arrows in the inset show the atomic pairs contributing to the main
FT-EXAFS peak in both structures.
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are shown in Fig. 4(a) (for selected temperatures) and in the
Supplemental Material, Fig. S4. The obtained RDFs g̃ðRÞ
are smooth and non-negative functions for all values ofR. As
expected, at low temperature the RDF between 2 and 4 Å is
split in two peaks, in agreement with the bcc-type structure.
At higher temperatures, RDF peaks broaden and merge
together. To analyze quantitatively the obtained RDFs and to
detect bcc-to-fcc phase transition, we calculated the running
coordination number NRCNðRÞ ¼

R
R
0 g̃ðrÞdr [70]. NRCNðRÞ

yields a plateau in between coordination shells, which can
be used to calculate the coordination numbers N of a
single shell or a group of adjacent shells. For example,
N1 ¼ NRCNðR1Þ, where R1 is the minimum of g̃ðRÞ in the R
range between 2.5 and 3.5 Å, includes contribution of the
first coordination shell for fcc iron, and first two coordination
shells in bcc iron; thus, it is equal to 12 in fcc-type and
8þ 6 ¼ 14 in bcc-type material. The obtained temperature
dependence of N1 is shown in Fig. 4(b), and demonstrates a
sharp transition from a bcc-like to a fcc-like environment
between 1173 and 1203 K. Simultaneously, the average
density of the structure sharply increases, as evidenced by
the integrated contribution of distant coordination shells
N2 ¼ NRCNðRmaxÞ [Fig. 4(c)]. Sharp transformation from a
bcc-like to denser fcc-like structure in both cases agrees with
the expected behavior for structure parameters in the first-
order phase transition [29].
In summary of this part, the NN approach succeeded to

obtain local structure information in iron in the broad
temperature range and with much better detail than conven-
tional EXAFS analysis. While the construction of the
training sets took days of CPU time and the training of
NN took hours, the calculation of the RDF for any given
EXAFS spectrum using the prebuilt NN took only a few

seconds. As an additional validation of ourNN-basedmethod,
weperformedRMCsimulations, as described inRefs. [46,50],
to independently obtain the RDF. Unlike it is for our NN
method, RMC simulations require several CPU weeks of
calculations for each EXAFS spectrum and a priori knowl-
edge of crystallographical structure: here for choosing
between bcc and fcc models we use NN results, while the
lattice parameters were taken from Ref. [28]. The agreement
between the RMC-modeled and experimental EXAFS is
shown in Fig. 2 and demonstrates the high accuracy of the
RMC-generated structure models both at room temperature
(bcc structure) and high temperature (fcc structure). On the
other hand, it shows that our experimental EXAFS data agree
with the average structure model from XRD [28], and is also
a testimony to the success of our experimental procedure that
we used to ensure that no unwanted Fe species are present
in our sample.
The RDFs, obtained fromNNanalysis, are comparedwith

RMC results in Fig. 4 and Fig. S4, and confirm the high
accuracy of our NN-based method: even at the highest
temperature the asymmetric shapes of RDF peaks up to
6 Å are reproduced reliably by NN. Note that the current 6 Å
limit is imposed only by the number of photoelectron paths,
included in EXAFS calculations, and our analysis, in prin-
ciple, can be extended to even more distant coordination
shells.
Another important point is that NN-based analysis

performs substantially better than a trivial matching of
theoretical spectra with experimental data. One may imag-
ine that instead of being used for NN training, MD-EXAFS
data could be compared directly with experimental
EXAFS, and the RDF for the model that gives the best
agreement with experiment is then claimed to be the true
RDF in the experimental sample. Results of such a
matching approach are shown in Fig. S4. While it gives
comparable results to our NN method at low temperatures,
it fails at higher temperatures, where in an attempt to
describe the temperature effect in the dominating first
coordination shell contribution it allows significant inac-
curacies in the contributions of distant coordination shells.
Since in bulk iron the fcc structure is observed only at

high temperature, to demonstrate the ability of our method
to recognize well-ordered low-temperature fcc-type struc-
tures, we apply it to Ni K-edge EXAFS in bulk Ni, which
has fcc structure at room temperature (Fig. 4). Let us clarify
here that our NN was trained on theoretical Fe K-edge
spectra only. However, since Ni and Fe are neighbors in the
periodic table, their photoelectron scattering properties are
close, and one can use the NN, trained on iron data, to
analyze nickel data as well. As shown in Fig. 4, our NN
correctly predicts the fcc-type structure forNi, and the shapes
of RDF peaks are in an excellent agreement with RMC
results. One can also find the one-to-one correspondence
between the RDF features in the result for Ni at room
temperature and Fe at high temperature. Similar reasoning
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FIG. 4. (a) RDFs for iron at 300, 900, and 1273 K, and for
nickel (fcc) and cobalt (hcp), obtained by NN from experimental
EXAFS. Dashed line is the averaged result from 10 independ-
ently trained NNs, shaded regions show the standard deviation of
these results and characterize the uncertainty. For comparison the
results of RMC simulations are also shown. The R1 value is
shown as a vertical dashed line. Temperature dependencies of
integrated RDFs N1 and N2 are shown with empty circles in (b)
and (c). Dashed lines are a guide for the eye.
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allows us to employ our NN to analyze Co K-edge EXAFS
from bulk cobalt that, at room temperature, assumes the hcp-
type structure. As shown in Fig. 4, NNgives excellent results
in this case as well. Importantly, it can detect the splitting of
the RDF peak between ∼4.5 and 5.0 Å, which distinguishes
the RDF of hcp-type cobalt from that of the fcc-type Ni.
The ability of our NN to detect the differences between the
fcc and hcp structures from EXAFS spectra is remarkable,
since it is almost impossible to detect this subtle difference by
other approaches to EXAFS analysis.
To summarize, the neural network-based method enables

accurate and fast extraction of structural information from
experimental EXAFS. The advantage of this approach over
existing analysis methods was demonstrated on the exam-
ple of the in situ study of high-temperature structural
transition from ferrite to austenite. The NN-based method
can immediately be applied to the local structure analyses
in Fe, Ni, Co, and Mn metals, as well as in their alloys.
It can also be easily generalized to other systems (including
nonmetallic, multicomponent materials). We envision that
an important application of this method will be in situ
monitoring of structural transformations in nanostructured
materials. We believe also that the method, developed here
for deciphering EXAFS spectra, will be useful for the
analysis of other structure-sensitive data, e.g., for analysis
of pair-distribution functions from the total x-ray or neutron
scattering data [33,71], where one faces similar challenges
in data analysis as in EXAFS spectroscopy. The trained
NNs can be shared (since they are explicit functions), and
we anticipate that an openly available library of NNs,
trained for specific tasks (e.g., processing of EXAFS and
XANES data in different materials) can be developed,
allowing the researchers in the field to analyze their own
data without the need to do the tedious NN training process
themselves.
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