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The Gardner transition is the transition that at mean-field level separates a stable glass phase from a
marginally stable phase. This transition has similarities with the de Almeida–Thouless transition of spin
glasses. We have studied a well-understood problem, that of disks moving in a narrow channel, which
shows many features usually associated with the Gardner transition. We show that some of these features
are artifacts that arise when a disk escapes its local cage during the quench to higher densities. There is
evidence that the Gardner transition becomes an avoided transition, in that the correlation length becomes
quite large, of order 15 particle diameters, even in our quasi-one-dimensional system.
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In a remarkable series of papers (see Ref. [1] for a review
and references) the large-dimension limit of the hard sphere
fluid has been solved. This program of calculation provides
the mean-field description relevant for the dynamical glass
phase transition, the Kauzmann ideal glass transition, the
Gardner transition, and the geometrical description of the
properties of jammed states. The next step is of course to
understand what happens in finite dimensions. In this Letter
we argue that at least the Gardner transition is not a real
transition in physical dimensions, d ≤ 3. The Gardner
transition is the transition associated with the emergence
of a complex free-energy landscape composed of many
marginally stable sub-basins contained within a larger glass
metabasin [2]. It is thus similar to a state of a spin glass in a
phase with broken replica symmetry [3]. In fact the field
theory of the Gardner transition is closely related to that of
the Ising spin glass problem in a random magnetic field—
the de Almeida–Thouless transition [4].
It has been argued for some time that the de Almeida–

Thouless transition only occurs in systems with dimensions
d > 6 [5–7], but this is still controversial [8–11].
Furthermore, in two dimensions there is not even a spin
glass transition in zero field, and none has been detected
either in a finite field. Nevertheless, both simulations [12]
and experiments on hard disks in two dimensions [13,14]
seem to provide evidence for a Gardner transition during
compression; i.e., that glass systems that start with the same
particle positions but with different particle velocities, can,
by the end of the compression, be in mutually inaccessible
states. To understand what might be going on, we have
applied the methods of Ref. [12] to a system of hard disks
moving in a narrow channel, which is a model that has
previously been studied in some detail [15–25]. Our
system, being one dimensional, cannot have a true phase
transition. We find that we can produce the same kinds of
behavior that other investigators studying two- and three-
dimensional hard sphere systems have explained in terms

of the state-following Gardner transition. However,
because of the simplicity of our system we can give a full
explanation of our observations. We find that some of the
behavior that has been ascribed to the Gardner transition
(such as a nontrivial change in the distribution of an order
parameter) arises when the timescales associated with the
quench used in the state-following investigations are long
enough for there to be a significant chance of a disk
escaping its cage by crossing the channel. Our results thus
do not imply that there are glasses that are stable and
glasses that are marginal, with the Gardner transition
separating the two [12]. Effects that have been attributed
to the Gardner transition in two- and three-dimensional
hard-sphere systems may also have a simple explanation,
connected with just a few disks or spheres escaping their
cages on the time scale of the quench. In a recent preprint,
Scalliet et al. [26] have invoked a similar mechanism to
help explain the absence of a Gardner transition in a system
of particles that interact via a soft potential. However, for
our system of hard disks we can provide evidence that there
is an avoided Gardner transition at which the correlation
length grows to a large value, ≈15 particle diameters, but
does not diverge. For hard spheres in three dimensions,
which is closer to the mean-field limit of infinite dimension,
we suspect that the equivalent length scale will be larger
still and exceed the linear dimensions of the systems that
were simulated [12], making it impossible to distinguish a
true phase transition from an avoided one.
Details of the system that we are studying are given in

Fig. 1. The packing fraction ϕ is defined as ϕ ¼
Nπσ2=ð4HdLÞ, where N is the number of disks in a channel
of length L. The channel width Hd was taken to be 1.95σ,
where σ is the diameter of a disk; we have previously made
extensive transfer-matrix [27] calculations of thermodynamic
properties and correlation functions for this case [16].
The dynamics in this system start to slow as “zigzag”

order sets in above a packing fraction ϕ ¼ ϕd ≈ 0.48
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[15–17]. This kind of order is characterized by successive
values of yi taking opposite signs (see Fig. 1). The zigzag
order can be interrupted by defects where successive yi are
of the same sign; the correlation length ξ for zigzag order is
approximately half the average distance between defects
[17]. These defects play an important role in our analysis of
the dynamics of the system. (Defects of one kind or another
seem to play an important role across the whole of glass
physics [28–31].) Their spacing increases rapidly with
increasing ϕ, such that ξ passes 2000 at ϕ ¼ 0.7206 and
reaches ξ ¼ 2.3 × 106 at ϕ ¼ 0.76.
We use event-driven molecular dynamics for our sim-

ulations. The number of disks N is taken to be 4000 and
periodic boundary conditions are applied in the x direction.
We start the system in an initial “equilibrium” state of
packing fraction ϕi ≥ 0.70 and use the Lubachevsky-
Stillinger algorithm [32] to compress it to values of
ϕ > ϕi on a time scale much less than the α relaxation
time at the packing fraction ϕi. We put the word equilib-
rium in quotes as for the packing fractions studied there
should be no or very few defects present in the system, but
we have found there are typically ∼10 present, owing to
imperfect equilibration. During the compression, the diam-
eter of the disks is increased at a rate _σ and the width of the
channel is also increased so that the relation Hd ¼ 1.95σ
is maintained throughout the compression [19]. Such a
compression is “state following” if on the time scale of the
quench most of the disks remain caged and do not move
far from their initial positions. The kinetic energy of the
disks increases during the compression, so, after the
quench, the disks are assigned new velocities drawn from
a Maxwellian distribution for particles of mass m ¼ 1 at a
reciprocal temperature β ¼ 1. The unit of length is chosen
so that σ ¼ 1.
We judge the extent of caging by studying the mean-

squared y displacements (MSD) of the disks from their
initial positions yiðtWÞ,

Δðt; tWÞ ¼
1

N

XN

i¼1

h½yiðtþ tWÞ − yiðtWÞ�2i; ð1Þ

averaged over both thermal fluctuations and initial states.
The time t starts after a waiting time tW , when the
compression has reached a chosen target packing fraction
ϕ. The MSD Δðt; tWÞ grows initially as t2 from zero at
t ¼ 0 (see Fig. 2). For our choice of channel width the disks
cannot pass each other so the ordering 0 ≤ x1 < x2 < � � � <
xN < L is preserved at all times, and the disks are always
caged in the x direction. Caging in the y direction is
indicated by the presence of a plateau in Δðt; tW ¼ 0Þ; the
plateau is present for packing fractions ϕ > 0.7 (see Fig. 2),
rather than for ϕ≳ ϕd, as seen in two- and three-
dimensional systems. Caging is a prerequisite for seeing the
state-following Gardner transition [12]. In contrast to the
studies of two- and three-dimensional systems, Δðt; tWÞ
cannot increase indefinitely as t → ∞ since in our system
jyij ≤ h=2. The α relaxation time τα is defined as the time at
which Δ leaves the plateau, which in our system is the
result of disks crossing from one side of the channel to
the other; quantitative estimates for τα are given in the
Supplemental Material [33]. Channel crossing is catalyzed
by the presence of the defects; if defects are absent, they
must first be nucleated in pairs [15,16], and this is a process
that takes much longer than the α relaxation time [15]. We
have prepared initial states free of defects and have found
for such states that we cannot observe the end of the plateau
on the times for which we could run the simulation; this is
shown in Fig. 3. In such systems there is no channel
crossing on accessible time scales.
To see Gardner-like behavior, one must study indepen-

dent copies A and B of the system [12]. Initially, the disks in
A and B have identical coordinates ðxi; yiÞ, taken from the

FIG. 2. Mean-squared displacements Δðt; tW ¼ 0Þ [crosses]
and ΔABðtÞ [squares] as a function of time t, where the quench
was started from the initial equilibrium state of packing fraction
ϕi ¼ 0.720, which contains defects, and compressed to packing
fractions ϕ ¼ 0.730, 0.745, and 0.772. Data have been multiplied
by 5k, with k ¼ 0;…; 3 for ϕ ¼ 0.772;…; 0.72, respectively,
so the data points do not obscure each other. Note that for ϕ ¼
ϕi ¼ 0.720 there was no quench; no disks crossed the channel in
this case, so ΔAB follows Δ closely.

FIG. 1. The system of hard disks in a channel. The distance Hd
is the width of the channel, σ is the diameter of each disk, and
h ¼ Hd − σ is the width of the channel accessible to the centers
of the disks. For the coordinates (x, y) of the disk, y is measured
from the center line of the channel. The blue shaded disks can be
regarded as a defect in the zigzag arrangement of the disks that is
favored at high density.
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equilibrium state at ϕi, but they are assigned different
velocities drawn from a Maxwellian distribution. The
quantity studied is the MSD of their separation,

ΔABðtÞ ¼
1

N

XN

i¼1

h½yA;iðtÞ − yB;iðtÞ�2i: ð2Þ

In Fig. 2 we show our results for Δ andΔAB as a function of
time for various initial packing fractions. At the larger
packing fractions, they show a feature that has been
previously been regarded as a signature of the Gardner
transition, a difference between the plateau values of
Δðt; tWÞ and ΔABðtÞ [12]. These have been plotted against
ϕ in Fig. 4. To extract the plateau values, we used the
method of Ref. [12], in which the MSD starting from a
given equilibrium state are rescaled to a universal curve
of Δ=Δm against t=tm, where Δm and tm are ϕ-dependent
scaling factors.
Plateau values of Δðt; tWÞ and ΔABðtÞ can also be

calculated on the assumption that no disk crosses the
channel, so that in Eq. (1), yiðtþ tWÞ and yiðtWÞ take
the same sign; similarly, yA;iðtÞ and yB;iðtÞ take the same
sign in Eq. (2). Then, on the plateau, Δðt; tWÞ and ΔABðtÞ
can be approximated by

Δðt; tWÞ ¼ ΔABðtÞ ≈ 2ðhy2i − hjyji2Þ: ð3Þ

We calculate hy2i and hjyji2 using the transfer-matrix
method of Ref. [16]; the results from Eq. (3) are indis-
tinguishable from the plateau values of Δ and ΔAB seen
in Fig. 3.

In recent work, Scalliet et al. [26] have shown that a
splitting of the plateau values of Δ and ΔAB is not of itself
sufficient to show that there is a state-following Gardner
transition that requires the stable glass to split into margin-
ally stable sub-basins where the two copies A and B
sometimes end up. The split can instead be due to a small
subset of the particles being frozen into slightly different
locations in the two copies. As we shall see, an explanation
of this kind also applies to our system of disks in a channel.
For very large times, t ≫ τα, disks may cross the

channel, so that hyiðtþ tWÞyiðtWÞi → 0; thus, Δðt; tWÞ
and ΔABðtÞ will both reach a second plateau at the
equilibrium value, 2hy2i i ≈ h2=2. However, this long-time
limit is not relevant to the state-following Garder transition,
where one is interested in times such that Δðt; tWÞ and
ΔABðtÞ are still on their first plateau. At the α relaxation
time disks begin to escape their cages by crossing from
one side of the channel to the other. Channel crossing is
strongly suppressed in the absence of defects; thus, for a
system with no defects there can be no splitting in the first
plateau values of Δ and ΔAB at large packing fractions; this
is confirmed by the results shown in Fig. 3. When defects
are present, ΔAB and Δ separate, as shown in Fig. 4.
To understand the cause of the splitting we turn to the

histograms of the plateau values of Δ and ΔAB in Fig. 5. In
all cases, one can see that the distribution of ΔAB has
acquired additional peaks compared to the distribution
for Δ. These arise because, during the quench from ϕi
to ϕ, in some of the copies of the system one or more disks
belonging to defects have managed to escape their cages
and have crossed to the other side of the channel. The
splitting of the peaks due to channel crossing would be
approximately h2=N, which is consistent with the data in
Fig. 5. It should be understood that this process is possible

FIG. 3. Mean-squared displacements Δðt; tW ¼ 0Þ [crosses]
and ΔABðtÞ [squares] as a function of time t, where the quench
was started from an initial state of packing fraction ϕi ¼ 0.720,
which contained no defects, and compressed to packing fractions
0.730, 0.745, and 0.772. Data have been multiplied by 5k, with
k ¼ 0;…; 3 for ϕ ¼ 0.772;…; 0.72, respectively, so the data
points do not obscure each other. Notice that there is no splitting
on the plateau between Δ and ΔAB.

FIG. 4. Comparison of the plateau values of Δ and ΔAB for the
system with defects showing that the two separate, with ΔAB > Δ,
as ϕ increases. For clarity, the data have been shifted up by
0.00025k, where k ¼ 0; 1;…; 6 for ϕ ¼ 0.76; 0.75;…; 0.70, re-
spectively. Error bars are insignificant in comparison to the size of
the data points.
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even though the compression time is much shorter than τα:
Fig. 5 shows that disks have crossed in only a few of the
copies of the system, despite the presence of ∼10 defects in
each copy. Our explanation of why there is a splitting of Δ
and ΔAB does not invoke a Gardner transition and is similar
to that given in Ref. [26] for soft spheres, except that in our
system we can explicitly identify the localized defects
associated with the disks that move.
Nevertheless, evidence for an avoided Gardner transition

in our hard-disk system can be found by studying the
appropriate correlation length. Following Ref. [12], we
define this from the large-distance behavior of the corre-
lation function associated with Δi

AB ¼ ðyA;i − yB;iÞ2, i.e.,
G0

PðkÞ ¼ huiuiþki, where ui ¼ Δi
AB=ΔAB − 1 and ΔAB is

the value on the plateau which is given by Eq. (3). For our
system of disks moving in a narrow channel, G0

PðkÞ can be
obtained from a transfer-matrix calculation in the high-
density regime where channel crossing can be ignored [33].
The correlation function shows a complicated behavior

for small separations k, but for large k it decreases
exponentially as G0

PðkÞ ∼ ð−1Þk exp½−k=ξ3�. In Fig. 6 we
show how the correlation length ξ3 depends on the packing
fraction ϕ. The length scale ξ3 (which can also be
calculated from the eigenvalues of the transfer matrix
[16,33]) rises to its maximum value at ϕ ¼ 0.8049 before
falling again. Such behavior is typical of an avoided
transition. Expressed as a distance, ξ3L=N ≈ 0.50ξ3σ,
the maximum value of the correlation length is approx-
imately 15σ.
The susceptibility χAB is defined, following Ref. [26], as

χAB ¼ NvarðΔABÞ=varðΔi
ABÞ, which is equivalent to

χAB ¼ Δ2
AB

varðΔi
ABÞ

X∞

k¼−∞
G0

PðkÞ: ð4Þ

Figure 6 shows that χAB grows rapidly as the density
increases, with no sign of leveling off as might have been
expected for an avoided transition. This is because the
sum in Eq. (4) is dominated by the small k region (see the
Supplemental Material [33]).
To summarize, the splitting between the plateau values of

Δ and ΔAB does not provide strong evidence for a Gardner
transition, as it is an artifact that arises when there is a
significant chance that a disk will escape its cage during the
quench. A similar explanation may apply to the observa-
tions reported in Refs. [12,13]. Our study of the correlation
length ξ3 shows that the Gardner transition is an avoided
transition for our one-dimensional system of hard disks.
The large magnitude of the correlation length at the avoided
transition suggests that for hard spheres in three dimensions
the equivalent length scale could be very large; thus we
anticipate that it will be challenging for simulations to
distinguish an avoided Gardner transition from a true phase
transition. Nevertheless, we expect the Gardner transition to
be an avoided transition for any potential, hard or soft, in
dimensions d ≤ 6.
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